Study on Atmospheric Precipitable Water and Precipitation Conversion Efficiency of Muti-Year in Inner Mongolia

  • WANG Huiqing ,
  • FU Yanan ,
  • BAO Fuxiang ,
  • MENG Xuefeng
Expand
  • HulunBuir Meteorological Bureau, Hailaer 021008, Inner Mongolia, China;Inner Mongolia Climate Center, Hohhot 010000, Inner Mongolia, China;Inner Mongolia Meteorological Bureau, Hohhot 010000, Inner Mongolia, China

Received date: 2017-01-16

  Online published: 2018-06-28

Abstract

The spatial and temporal distributions of atmospheric precipitable water and precipitation conversion efficiency in Inner Mongolia region were analised by using the NCEP/NCAR reanalysis data and monthly precipitation data of 119 stations from 1961 to 2015. The results show that:(1) The average of atmospheric precipitable water in Inner Mongolia region is 8~14 mm. The atmospheric precipitable water is gradually decreasing from south to north and from east to west. The interannual variation showed a decreasing trend in recent 65 years. Influenced by front activities and the abrupt change of atmospheric circulation, there were two times of sudden growth in April and June, and one time of sudden reduction from October to November. (2) The number of water cycle in Inner Mongolia region is the highest in summer, the second in spring or autumn, and the lowest in winter, which is decreasing from northeast to southwest, and the interannual variation shows an increasing trend. (3) The main path of water transportation in Inner Mongolia region is westerly, but the southerly transportation directly lead to the increase of precipitation and water cycle. (4) Seasonal water vapor input is less than the output, which leads to an imbalance of water vapor in Inner Mongolia region. (5) The spatial distribution of water vapor flux divergence is consistent with the spatial distribution of water cycle, indicating that the number of water cycles can objectively reflect the transformation of precipitable water vapor.

Cite this article

WANG Huiqing , FU Yanan , BAO Fuxiang , MENG Xuefeng . Study on Atmospheric Precipitable Water and Precipitation Conversion Efficiency of Muti-Year in Inner Mongolia[J]. Plateau Meteorology, 2018 , 37(3) : 786 -795 . DOI: 10.7522/j.issn.1000-0534.2017.00077

References

[1]An G, Sun L, Lian Y, 2005.A primary analysis of utilizable precipitation in Northeast China[J].Climat Environ Res, 10(1):132-139.<br/>安刚, 孙力, 廉毅, 2005.东北地区可利用降水资源的初步分析[J].气候与环境研究, 10(1):132-139.
[2]Chen J M, Lu G H, Wu Z Y, et al, 2016.Change properties of summer extreme precipitation events and temperature and associated large-scale circulation in China during 19602009[J].Plateau Meteor, 35(3):675-684.DOI:10.7522/j.issn.1000-0534.2015.00072.<br/>陈金明, 陆桂华, 吴志勇, 等, 2016.19602009年中国夏季极端降水事件与气温的变化及其环流特征[J].高原气象, 35(3):675-684.
[3]Gong D L, Bian D X, 2002.An elementary analysis of water vapour resources over Shandong Province[J].Climat Environ Res, 7(4):474-482.<br/>龚佃利, 边道相, 2002.山东省空中水资源的初步分析[J].气候与环境研究, 7(4):474-482.
[4]Jiang X L, Ma Z G, Gong Y F, 2015.Comparative analysis of relationship between moisture budget and precipitation changes among global significantly wetting/drying regions[J].Plateau Meteor, 34(5):1279-1291.DOI:10.7522/j.issn.1000-0534.2014.00109.<br/>蒋贤玲, 马柱国, 巩远发, 2015.全球典型干湿变化区域水汽收支与降水变化的对比分析[J].高原气象, 34(5):1279-1291.
[5]Li X Y, Guo X L, Zhu J, 2008.Climatic distribution features and trends of cloud water resources over China[J].Chinese J Atmos Sci, 32(5):1094-1106.<br/>李兴宇, 郭学良, 朱江, 2008.中国地区空中云水资源气候分布特征及变化趋势[J].大气科学, 32(5):1094-1106.
[6]Liu G W, 1996.Atmosphere process in hydrologic cycle[M].Beijing:China Meteorological Press, 25-65.<br/>刘国维, 1996.水文循环的大气过程[M].北京:气象出版社, 25-65.
[7]Lu C X, Zhao C, 1985.Climatic characteristics of water vapor distribution in Guizhou Province[J].Plateau Meteor, 4(2):186-180.<br/>卢成孝, 赵彩, 1985.贵州空中水汽量分布的气候特征[J].高原气象, 4(2):186-180.
[8]Shao Y, Zheng G G, 2007.A study of the feature of water resources in spring precipitating stratiform clouds in Henan Pronvince[J].Meteor Mon, 33(7):22-32.<br/>邵洋, 郑国光, 2007.河南省春季层状云系降水的空中水资源特征分析[J].气象, 33(7):22-32.
[9]Sun W G, Cheng B Y, Guo Q, 2009.Influence of the subtropical high over western pacific on the difference between precipitation and evaporation in North China[J].Plateau Meteor, 28(5):1167-1173.<br/>孙卫国, 程炳岩, 郭渠, 2009.西太平洋副热带高压对华北地区降水蒸发差的影响[J].高原气象, 28(5):1167-1173.
[10]Zhang S P, Zhu C W, Zhou X J, 2014.Decadal variability of water resources in North China and its linkage to the global warming[J].Chinese J Atmos Sci, 38(5):1005-1016.<br/>张书萍, 祝从文, 周秀骥, 2014.华北水资源年代际变化及其与全球变暖之间的关联[J].大气科学, 38(5):1005-1016.
[11]Zhou C Y, Li Y Q, Peng J, 2006.The characteristics and variation of precipitation and water resource of sichuan and Chongqing Basin on the Eastern Side of the Plateau[J].Chinese J Atmos Sci, 30(6):1217-1226.<br/>周长艳, 李跃清, 彭俊, 2006.高原东侧川渝盆地降水与水资源特征及变化[J].大气科学, 30(6):1217-1226.
[12]Zhuo G, Bianba C R, Yang X H, et al, 2013.Spatial and temporal changes of atmospheric precipitable water in Tibet Region in recent 30 years[J].Plateau Meteor, 32(1):23-30.DOI:10.7522/j.issn.1000-0534.2012.00003.<br/>卓嘎, 边巴次仁, 杨秀海, 等, 2013.近30年西藏地区大气可降水量的时空变化特征[J].高原气象, 32(1):23-30.
[13]Zou J S, Liu H L, 1983.Distribution of water vapour content and its seasonal variarion over the mainland of China[J].J Meteor Sci, 19(1):32-10.<br/>邹进上, 刘惠兰, 1983.我国大陆上空平均水汽含量及其季节变化[J].气象科学, 19(1):32-10.
[14]Zou J S, Liu H L, 1984.The basic features of distribution of water vapour content and their controlling factors in China[J].Acta Geograp Sinica, 36(4):377-391.<br/>邹进上, 刘惠兰, 1984.我国平均水汽含量分布的基本特点[J].地理学报, 36(4):377-391.
Outlines

/