Spatio-temporal Patterns of Extreme Precipitation Events over China in Recent 56 Years

  • Shan LU ,
  • Zeyong HU ,
  • Baipeng WANG ,
  • Pei QIN ,
  • Li WANG
Expand
  • <sup>1.</sup>Key laboratory of Land Surface Process and Climate Change in Cold and Arid Regions, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, Gansu, China;<sup>2.</sup>Shaanxi Meteorological Bureau, Xi’an 710014, Shaanxi, China;<sup>3.</sup>Center for Excellence in Tibetan Plateau Earth Science, Chinese Academy of Science, Beijing 100101, China;<sup>4.</sup>University of Chinese Academy of Sciences, Beijing 100049, China;<sup>5.</sup>Xi'an Meteorological Bureau, Xi’an 710016, Shaanxi, China

Received date: 2019-04-09

  Online published: 2020-08-28

Abstract

Using the daily precipitation datasets of 693 observational stations during the period of 1961 -2016, this paper analyzed the spatio-temporal patterns and variations of the extreme precipitation events, persistent extreme precipitation events and their start and end dates in China.The results showed that the extreme precipitation events increased significantly in the past 56 years in China, and the increasing trends of the amounts and days of extreme precipitation were observed at about 68% of the stations, which were mainly located in the southeastern coastal and Western China.The largest increase of extreme precipitation amounts was observed in Eastern China, with an increasing trend up to 18.2 mm·(10a)-1, while the most significant increase of extreme precipitation days was observed in Northwestern China, with an increasing trend of 0.37 d·(10a)-1.The variation of persistent extreme precipitation events averaged over China was characterized by insignificant increasing trend.The significant increasing trends of the amounts and frequencies of persistent extreme precipitation at the 99% confidence level were only observed over the Northwestern China, while the Northern China and Southwestern China showed insignificant decreasing trends.The start and end dates of extreme precipitation events averaged over China showed obvious advance and delay trend, respectively.The significant advance of start dates was found in Northwestern China, Qinghai-Tibetan Plateau and Northeastern China, and the significant delay of end dates was observed in Northwestern China, which led to an increase in the duration of extreme precipitation events in Northwestern China, with the largest rate of 10.4 d·(10a)-1.

Cite this article

Shan LU , Zeyong HU , Baipeng WANG , Pei QIN , Li WANG . Spatio-temporal Patterns of Extreme Precipitation Events over China in Recent 56 Years[J]. Plateau Meteorology, 2020 , 39(4) : 683 -693 . DOI: 10.7522/j.issn.1000-0534.2019.00058

References

[1]Alexander L V, Zhang X B, Peterson T C, al et, 2006.Global observed changes in daily climate extremes of temperature and precipitation[J].Journal of Geophysical Research: Atmospheres, 111: D05109.
[2]Easterling D R, Events J L, Groismman P Y, al et, 2000.Observed variability and trends in extreme climate events: A brief review[J].Bulletin of the American Meteorological Society, 81(3): 417-425.
[3]Fu G B, Yu J J, Yu X B, al et, 2013.Temporal variation of extreme rainfall events in China, 1961 -2009[J].Journal of Hydrology, 487: 48-59.
[4]Gochis D, Schumacher R, Friedrich K, al et, 2015.The great Colorado flood of September 2013[J].Bulletin of the American Meteorological Society, 96(9): 1461-1487.
[5]Huang J, Sun S L, Xue Y, al et, 2014.Spatial and temporal variability of precipitation and dryness/wetness during 1961 -2008 in Sichuan Province, West China[J].Water Resources Management, 28(6): 1655-1670.
[6]Jones P D, Horton E B, Folland C K, al et, 1999.The use of indices to identify changes in climatic extremes[J].Climatic Change, 42(1): 131-149.
[7]Lynch S L, Schumacher R S, 2014.Ensemble-based analysis of the May 2010 extreme rainfall in Tennessee and Kentucky[J].Monthly Weather Review, 142(1): 222-239.
[8]Re M, Barros V R, 2009.Extreme rainfalls in SE South America[J].Climatic Change, 96(1/2): 119-136.
[9]Wang S W, Gong D Y, 2000.Climate in China during the four special periods in Holocene[J].Progress in Natural Science: Materials International, 10(5): 379-386.
[10]Wentz F J, Ricciardulli L, Hilburn K, al et, 2007.How much more rain will global warming bring?[J].Science, 317(5835): 233-235.
[11]Xu Y, Gao X J, Giorgi F, 2009.Regional variability of climate change hot-sports in East Asia[J].Advances in Atmospheric Sciences, 26(4): 783-792.
[12]You Q L, Kang S C, Aguilar E, al et, 2008.Changes in daily climate extremes in the eastern and central Tibetan Plateau during 1961 -2005[J].Journal of Geophysical Research, 113(D7): 1639-1647.
[13]Zhai P M, Zhang X B, Wan H, al et, 2005.Trends in total precipitation and frequency of daily precipitation extremes over China[J].Journal of Climate, 18(7): 1096-1108.
[14]Zhang Q, Qi T Y, Singh V P, al et, 2015.Regional frequency analysis of droughts in China: A multivariate perspective[J].Water Resources Management, 29(6): 1767-1787.
[15]曹瑜, 游庆龙, 马茜蓉, 等, 2017.青藏高原夏季极端降水概率分布特征[J].高原气象, 36(5): 1176-1187.DOI: 10.7522/j.issn. 1000-0534.2016.00131.
[16]陈丹, 周长艳, 熊光明, 等, 2018.近 53 年四川盆地夏季暴雨变化特征分析[J].高原气象, 37(1): 197-206.DOI: 10.7522/j.issn.1000-0534.2017.00022.
[17]陈晓燕, 尚可政, 王式功, 等, 2010.近50年中国不同强度降水日数时空变化特征[J].干旱区研究, 27(5): 766-772.
[18]《第三次气候变化国家评估报告》编写委员会, 2015.第三次气候变化国家评估报告[R].北京: 科学出版社, 430-453.
[19]董思言, 高学杰, 2014.长期气候变化-IPCC第五次评估报告解读[J].气候变化研究进展, 10(1): 56-59.
[20]顾西辉, 张强, 孔冬冬, 2016.中国极端降水事件时空特征及其对夏季温度响应[J].地理学报, 71(5): 718-730.
[21]江志红, 陈威霖, 宋洁, 等, 2009.7个IPCC AR4模式对中国地区极端降水指数模拟能力的评估及其未来情景预估[J].大气科学, 33(1): 109-120.
[22]刘恬, 高晓清, 谭桂容, 等, 2019.中国江淮地区夏季强降水事件的统计分析[J].高原气象, 38(1): 136-142.DOI: 10.7522/j/issn.1000-0534.2018.00063.
[23]刘学华, 季致建, 吴洪宝, 等, 2006.中国近40年极端气温和降水的分布特征及年代际差异[J].热带气象学报, 22(6): 618-624.
[24]马佳宁, 高艳红, 2019.近50年黄河上游流域年均降水与极端降水变化分析[J].高原气象, 38(1): 124-135.DOI: 10.7522/j.issn.1000-0534.2018.00126.
[25]闵屾, 钱永甫, 2008.中国极端降水事件的区域性和持续性研究[J].水科学进展, 19(6): 765-771.
[26]钱维宏, 2011.气候变化与中国极端气候事件图集[M].北京: 气象出版社.
[27]任正果, 张明军, 王圣杰,等, 2014.1961-2011年中国南方地区极端降水事件变化[J].地理学报, 69(5): 640-649.
[28]孙军, 张福青, 2017.中国日极端降水和趋势[J].中国科学: 地球科学, 47(12): 1469-1482.
[29]王苗, 郭品文, 邬昀, 2014.中国东部极端降水变化特征及其与大气稳定度的关系[J].大气科学学报, 37(1): 47-56.
[30]吴佳, 周波涛, 徐影, 2015.中国平均降水和极端降水对气候变暖的响应: CMIP5模式模拟评估和预估[J].地球物理学报, 58(9): 3048-3060.
[31]翟盘茂, 潘晓华, 2003.中国北方近50年温度和降水极端事件变化[J].地理学报, 58(): 1-10.
[32]翟盘茂, 王萃萃, 李威, 2007.极端降水事件变化的观测研究[J].气候变化研究进展, 3(3): 144-148.
[33]赵阳, 徐祥德, 赵天良, 等, 2016.中国东部夏季暴雨极端事件与水汽输送相关流型特征[J].中国科学(地球科学), 46(8): 1123-1140.
[34]赵庆云, 张武, 王式功, 等, 2005.西北地区东部干旱半干旱区极端降水事件的变化[J].中国沙漠, 25(6): 904-909.
[35]赵雪雁, 王亚茹, 张钦, 等, 2015.近50 a青藏高原东部夏半年强降水事件的气候特征[J].干旱区地理, 38(4): 675-683.
[36]邹用昌, 杨修群, 孙旭光, 等, 2009.我国极端降水过程频数时空变化的季节差异[J].南京大学学报(自然科学版), 45(1): 98-108.
Outlines

/