Surface energy balance and distribution are the result of the interaction of vegetation, climate and other factors.The study of energy, especially the distribution of turbulent flux and its influencing factors, is of vital importance to regional water resources management, and is also of great significance for guiding scientific agricultural production.North China has a vast territory, a variety of vegetation types crisscross distribution, and the land surface process is more complex.Water vapor and precipitation caused by summer monsoon activities will change the underlying surface water, thermal characteristics and solar radiation forcing characteristics, which makes the factors affecting the characteristics of surface energy distribution more complicated.The study of surface energy balance and distribution process in this region is helpful to further understand the productivity and climate change of its ecosystem.Therefore, this paper analyzed the observation data of "Cooperative observation experiment in North China", and finally selects four vegetation types in north China, meadow, desert grassland, corn farmland and semi-arid grassland, which represents the vegetation types in the north of China to a certain extent.Based on a deep understanding of the characteristics of surface energy distribution, the effects of environmental factors on energy distribution are discussed.The results show each component of surface energy on a typical underlying surface presents a unimodal change trend, with obvious diurnal characteristics.Surface energy is uneven on each underlying surface.The energy closure of the above four typical underlying surfaces is 71%-91%, of which the semi-arid grassland is the largest and the corn farmland is the smallest.From the ratio of each energy component to net radiation, the net radiation of desert grassland and semi-arid grassland heats the atmosphere mainly in the form of sensible heat, and the percentage of sensible heat flux to net radiation is 29% and 36%, respectively.Alpine meadow and corn farmland latent heat flux is dominant, accounting for 42% and 37% of the net radiation, respectively.Among the meteorological factors affecting the Bowen ratio which is the water and heat comprehensive parameters of each underlying surface, the semi-arid grassland is affected by the ground-air temperature difference () and vapor pressure deficit (), while the corn farmland is mainly affected by the ground and air temperature difference ().The Bowen ratio of the desert grassland is influenced by the ground-air temperature difference () and average wind speed ().In addition, there is a significant exponential relationship between Bowen ratio and NDVI, and decreases with the increase of NDVI.
XueYuan REN
,
Qiang ZHANG
,
Ping YUE
,
Jin Hu YANG
,
XinYang YAN
. Study on Energy Partitioning and its Environmental Factors of Four Types of Typical Underlying Surfaces in North China[J]. Plateau Meteorology, 2021
, 40(1)
: 109
-122
.
DOI: 10.7522/j.issn.1000-0534.2020.00008
[1]Barr A G, Kamp G V D, Black T A, et al, 2012.Energy balance closure at the BERMS flux towers in relation to the water balance of the White Gull Creek watershed 1999 -2009[J].Agricultural and Forest Meteorology, 153: 3-13.DOI: 10.1016/j.agrformet. 2011.05.017.
[2]Castellvi F, Snyder R L, Baldocchi D D, 2008.Surface energy-balance closure over rangeland grass using the eddy covariance method and surface renewal analysis[J].Agricultural and Forest Meteorology, 148(6/7): 1147-1160.DOI: 10.1016/j.agrformet. 2008.02.012.
[3]Chen S S, Chen J Q, Lin G H, et al, 2009.Energy balance and partition in Inner Mongolia steppe ecosystems with different land use types[J].Agricultural and Forest Meteorology, 149(11): 1800-1809.DOI: 10.1016/j.agrformet.2009.06.009.
[4]Foken T, Mauder M, Liebethal C, et al, 2010.Energy balance closure for the LITFASS-2003 experiment[J].Theoretical and Applied Climatology, 101(1/2): 149-160.DOI: 10.1007/s00704-009-0216-8.
[5]Franssen H J H, St?ckli R, Lehner I, et al, 2010.Energy balance closure of eddy-covariance data: A multisite analysis for European FLUXNET stations[J].Agricultural and Forest Meteorology, 150(12): 1553-1567.DOI: 10.1016/j.agrformet.2010.08.005.
[6]Gao Z, Horton R, Liu H P, 2010.Impact of wave phase difference between soil surface heat flux and soil surface temperature on soil surface energy balance closure[J].Journal of Geophysical Research: Atmospheres, 115: D16112.DOI: 10.1029/2009JD013278.
[7]Gu L H, Meyers T, Pallardy S G, et al, 2006.Direct and indirect effects of atmospheric conditions and soil moisture on surface energy partitioning revealed by a prolonged drought at a temperate forest site[J].Journal of Geophysical Research: Atmospheres, 111(D16102): 1-13.DOI: 10.1029/2006JD007161.
[8]Heusinkveld B G, Jacobs A F G, Holtslag A A M, et al, 2004.Surface energy balance closure in an arid region: role of soil heat flux[J].Agricultural and Forest Meteorology, 122: 21-37.DOI: 10.1016/j.agrformet.2003.09.005.
[9]Kim S, Lee Y H, Kim K R, et al, 2014.Analysis of surface energy balance closure over heterogeneous surfaces[J].Asia-Pacific Journal of Atmospheric Sciences, 50(1): 553-565.DOI: 10. 1007/s13143-014-0045-2.
[10]Li H Y, Fu C B, Guo W D, 2017.An integrated evaluation of land surface energy fluxes over China in seven reanalysis/modeling products[J].Journal of Geophysical Research: Atmospheres, 122(16): 8543-8566.DOI: 10.1002/2016JD026166.
[11]Li S G, Eugster W, Asanuma J, et al, 2006.Energy partitioning and its biophysical controls above a grazing steppe in central Mongolia[J].Agricultural and Forest Meteorology, 37(1/2): 89-106.DOI: 10.1016/j.agrformet.2006.03.010.
[12]Liu H Z, Feng J W, 2012.Seasonal and interannual variations of evapotranspiration and energy exchange over different land surfaces in a semiarid area of China[J].Journal of Applied Meteorology and Climatology, 51(10): 1875-1888.DOI: 10.1175/JAMC-D-11-0229.1.
[13]Liu S M, Xu Z W, Wang W Z, et al, 2011.A comparison of eddy-covariance and large aperture scintillometer measurements with respect to the energy balance closure problem[J].Hydrology and Earth System Sciences, 15(4): 1291-1306.DOI: 10.5194/hess-15-1291-2011.
[14]Majozi N P, Mannaerts C M, Ramoelo A, et al, 2017.Analysing surface energy balance closure and partitioning over a semi-arid savanna FLUXNET site in Skukuza, Kruger National Park, South Africa[J].Hydrology and Earth System Sciences, 21(7): 3401-3415.DOI: 10.5194/hess-21-3401-2017.
[15]Mauder M, Jegede O O, Okogbue E C, et al, 2007.Surface energy balance measurements at a tropical site in West Africa during the transition from dry to wet season[J].Theoretical and Applied Climatology, 89(3/4): 171-183.DOI: 10.1007/s00704-006-0252-6.
[16]Rahman M M, Zhang W C, Wang K, 2019.Assessment on surface energy imbalance and energy partitioning using ground and satellite data over a semi-arid agricultural region in north China[J].Agricultural Water Management, 213: 245-259.DOI: 10.1016/j.agwat.2018.10.032.
[17]Robert C, 2012.Eddy Reprocessing [CP/OL].[2020-02-01].https: //www.geos.ed.ac.uk/homes/jbm/micromet/EdiRe.
[18]Sánchez J M, Caselles V, Rubio E M, 2010.Analysis of the energy balance closure over a FLUXNET boreal forest in Finland[J].Hydrology and Earth System Sciences, 14(8): 1487-1497.DOI: 10.5194/hessd-7-2683-2010.
[19]Yang Z S, Zhang Q, Hao X C, et al, 2019.Changes in evapotranspiration over global semiarid regions 1984 -2013[J].Journal of Geophysical Research: Atmospheres, 124(6): 2946-2963.DOI: 10.1029/2018JD029533.
[20]Yue P, Zhang Q, Zhang L, et al, 2019.Long-term variations in energy partitioning and evapotranspiration in a semiarid grassland in the Loess Plateau of China[J].Agricultural and Forest Meteorology, 278: 107671.DOI: 10.1016/j.agrformet.2019.107671.
[21]杜群, 刘辉志, 冯健武, 等, 2014.数据填补及能量闭合对半干旱区生态系统年净碳交换的影响[J].中国科学(地球科学), 44(5): 989-1001.DOI: 10.1007/s11430-013-4756-5.
[22]胡媛媛, 仲雷, 马耀明, 等, 2018.青藏高原典型下垫面地表能量通量的模型估算与验证[J].高原气象, 37(6): 1499-1510.DOI: 10.7522/j.issn.1000-0534.2018.00045.
[23]华文剑, 陈海山, 2011.陆面过程对全球变暖的响应及可能机制——基于 CMIP3 的多模式集合分析[J].大气科学, 35(1): 121-133.DOI: 10.3878/j.issn.1006-9895.2011.01.10.
[24]李宏毅, 肖子牛, 朱玉祥, 2018.藏东南地区草地下垫面湍流通量和辐射平衡各分量的变化特征[J].高原气象, 37(4): 923-935.DOI: 10.7522/j.issn.1000-0534.2017.00097.
[25]王姝, 刘树华, 郑辉, 等, 2015.关中平原麦田干热风过程陆气交换特征的数值模拟[J].地球物理学进展, 30 (4): 1481-1491.
[26]王维真, 徐自为, 刘绍民, 等, 2009.黑河流域不同下垫面水热通量特征分析[J].地球科学进展, 24(7): 714-723.
[27]文小航, 廖小罕, 袁文平, 等, 2014.中国东北半干旱区能量水分循环的同化模拟[J].中国科学(地球科学), 44(12): 2768-2784.DOI: 10.1360/zd-2014-44-12-2768.
[28]杨振常, 李玉霖, 崔夺, 等, 2012.半干旱典型沙区1951—2005年主要气象要素及潜在蒸散量的变化趋势研究[J].中国沙漠, 32(5): 1384-1392.
[29]岳平, 张强, 杨金虎, 等, 2011.黄土高原半干旱草地地表能量通量及闭合率[J].生态学报, 31(22): 6866-6876.
[30]张杰, 张强, 唐从国, 2013.极端干旱区大气边界层厚度时间演变及其与地表能量平衡的关系[J].生态学报, 33(8): 2545-2555.DOI: 10.5846/stxb201201090046.
[31]曾剑, 张强, 王胜, 2011.中国北方不同气候区晴天陆面过程区域特征差异[J].大气科学, 35(3): 483-492.
[32]曾剑, 张强, 2012.2008年夏季中国干旱-半干旱区陆面主要物理参数的平均特征[J].高原气象, 31(6): 1539-1550.
[33]张强, 曾剑, 张立阳, 2012.夏季风盛行期中国北方典型区域陆面水、 热过程特征研究[J].中国科学(地球科学), 42(9): 1385-1393.DOI: 10.1007/s11783-011-0280-z.
[34]赵靖川, 刘树华, 2015.植被变化对西北地区陆气耦合强度的影响[J].地球物理学报, 58(1): 47-62.DOI: 10.6038/cjg20150105.
[35]郑汇璇, 胡泽勇, 孙根厚, 等, 2019.那曲高寒草地总体输送系数及地面热源特征[J].高原气象, 38(3): 497-506.DOI: 10.7522/j.issn.1000-0534.2019.00024.