On the Causes of Decreased Regional Extreme Wind Frequency over the Qinghai-Xizang Plateau during the Spring Season
Received date: 2023-09-26
Revised date: 2024-01-29
Online published: 2024-01-29
Extreme wind events (EWEs) not only are a kind of meteorological disaster, but also serve as an important natural resource.The Qinghai-Xizang Plateau (QXP), well known as the "roof of the world", is vulnerable to global and regional climate change.However, the characteristics and mechanism of variability of extreme wind events over this region and associated mechanisms remain elusive.Under the background of global change, Chinese Sichuan-Tibetan Railway construction, the exploration on changes in the EWEs could deepen our scientific understanding the regional climate.In order to explore the spatial-temporal distribution characteristics of regional extreme wind events (REWs) over the central and eastern QXP for the period of 1982 -2021, daily data of maximum wind speed are utilized to define REWs.Further, with the aid of thermal - thermodynamic diagnosis and the multiple statistical methods, such as trend analysis, EOF and composite analysis, we explore the potential causes leading to the decreased frequency of RWEs.The results show that: (1) The REWs over the QXP significantly decreased since 1980, varied consistently throughout the QXP and occurred mostly in the northeastern QXP.The REWs as defined in the 95th and 99th percentiles decline with the rate of 44d/10a and 11.6d/10a.(2) During periods of REWs, the circulation pattern is "high in the west and low in the east" in the middle and high latitudes and "low in the west and high in the east" in the low latitudes.The main characteristics are as follows: the abnormal positive geopotopic in Mongolia-Siberia, the abnormal cyclonic circulation in Mongolia, the abnormal westerly wind in the northeast of the plateau, and the abnormal negative surface temperature in Mongolia.(3) In the context of global change, the weakening of the Siberian high in spring and the strengthening of the East Asian trough in winter leads to decreasing pressure gradient between the north and south sides of the QXP, the weakening of the westerly jet stream leads to decreasing momentum downdraft, and the rise of non-uniform surface temperature in Asia leads to the decreasing temperature gradient between the north and south sides of the QXP.At the same time, the abnormal cyclonic circulation weakened in Mongolia.It may be resulted from the co-influence of these large-scale circulation and local thermal factors that reduce the frequency of regional extreme wind events in the central and eastern parts of the QXP.
Wenzhuo FU , Bin CHEN , Xiangde XU . On the Causes of Decreased Regional Extreme Wind Frequency over the Qinghai-Xizang Plateau during the Spring Season[J]. Plateau Meteorology, 2024 , 43(5) : 1087 -1101 . DOI: 10.7522/j.issn.1000-0534.2024.00010
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | 敖雪, 翟晴飞, 崔妍, 等, 2018.1971-2015年辽宁省海岸带大风时空分布特征及成因分析[J].气象与环境学报, 34(5): 108-118.DOI: 10.3969/j.issn.1673-503X.2018.05.014.Ao X , |
null | |
null | 白虎志, 董安祥, 李栋梁, 等, 2005.青藏高原及青藏铁路沿线大风沙尘日数时空特征[J].高原气象, 24(3): 311-315. |
null | |
null | 丁一汇, 李霄, 李巧萍, 2020.气候变暖背景下中国地面风速变化研究进展[J].应用气象学报, 31(1): 1-12. |
null | |
null | 贺圣平, 王会军, 2012.东亚冬季风综合指数及其表达的东亚冬季风年际变化特征[J].大气科学, 36(3): 523-538.DOI: 10.3878/j.issn.1006-9895.2011.11083.He S P , |
null | |
null | 黄小梅, 管兆勇, 戴竹君, 等, 2013.冬季东亚大槽强度年际变化及其与中国气候联系的再分析[J].气象学报, (3): 416-428.DOI: 10.11676/qxxb2013.042.Huang X M , |
null | |
null | 雷润芝, 余晔, 周国兵, 等, 2023.1984-2020年青藏高原感热通量长期变化趋势分析[J].高原气象, 42(4): 833-847.DOI: 10.7522/j.issn.1000-0534.2023.00032.Lei R Z , |
null | |
null | 罗红羽, 于海鹏, 胡泽勇, 等, 2023.青藏高原热源对我国旱区气候异常影响研究进展[J].高原气象, 42(2): 257-271.DOI: 10.7522/j.issn.1000-0534.2022.00070.Luo H Y , |
null | |
null | 彭玉麟, 简茂球, 2012.亚洲冬季大气动能的时空演变特征及其与中国冬季降水和温度的关系[J].气候与环境研究, 17(4): 457-466.DOI: 10.3878/j.issn.1006-9585.2011.10038.Peng Y L , |
null | |
null | 秦豪君, 杨晓军, 马莉, 等, 2022.2000-2020年中国西北地区区域性沙尘暴特征及成因[J].中国沙漠, 42(6): 53-64.DOI: 10.7522/j.issn.1000-694X.2022.00042.Qin H J , |
null | |
null | 任国玉, 郭军, 徐铭志, 等, 2005.近50 年中国地面气候变化基本特征[J].气象学报, 63(6): 942-956.DOI: 10.11676/qxxb2005. 090.Ren G Y , |
null | |
null | 唐信英, 宋云帆, 王鸽, 等, 2022.1970-2020年青藏高原近地面风速时空变化特征[J].应用与环境生物学报, 28(4): 844-850.DOI: 10.19675/j.cnki.1006-687x.2022.02038.Tang X Y , |
null | |
null | 王黉, 李英, 吴哲红, 等, 2019.我国大风机理研究和预报技术进展[J].气象科技, 47(4): 600-607. |
null | |
null | 王鹏祥, 杨金虎, 张强, 等, 2007.近半个世纪来中国西北地面气候变化基本特征[J].地球科学进展, 148(6): 649-656.DOI: 10.11867/j.issn.1001-8166.2007.06.0648.Wang P X , |
null | |
null | 王蕊, 李栋梁, 王慧, 等, 2023.青藏高原与中国西北干旱区地面感热季节增强时间的差异及相互关系[J].高原气象, 42(2): 283-293.DOI: 10.7522/j.issn.1000-0534.2022.00045.Wang R , |
null | |
null | 吴国雄, 何编, 刘屹岷, 等, 2016.青藏高原和亚洲夏季风动力学研究的新进展[J].大气科学, 40(1): 22-32.DOI: 10.3878/j.issn.1006-9895.1504.15129.Wu G X , |
null | |
null | 吴佳, 吴婕, 闫宇平, 2022.1961-2020年青藏高原地表风速变化及动力降尺度模拟评估[J].高原气象, 41(4): 963-976.DOI: 10.7522/j.issn.1000-0534.2022.00065.Wu J , |
null | |
null | 徐祥德, 陈联寿, 2006.青藏高原大气科学试验研究进展[J].应用气象学报, 17(6): 756-772. |
null | |
null | 杨耀先, 胡泽勇, 路富全, 等, 2022.青藏高原近60年来气候变化及其环境影响研究进展[J].高原气象, 41(1): 1-10.DOI: 0.7522/j.issn.1000-0534.2021.00117.Yang Y X , |
null | |
null | 姚慧茹, 李栋梁, 2019.青藏高原风季大风集中期、 集中度及环流特征[J].中国沙漠, 39(2): 122-133.DOI: 10.7522/j.issn.1000-694X.2018.00054.Yao H R , |
null | |
null | 姚檀栋, 陈发虎, 崔鹏, 等, 2017.从青藏高原到第三极和泛第三极[J].中国科学院院刊, 32(9): 924-931.DOI: 10.16418/j.issn.1000-3045.2017.09.001.Yao T D , |
null | |
null | 姚正毅, 王涛, 周俐, 等, 2006.近40 年阿拉善高原大风天气时空分布特征[J].干旱区地理, 29(2): 207-212. |
null | |
null | 周波涛, 钱进, 2021.IPCC AR6 报告解读: 极端天气气候事件变化 [J].气候变化研究进展, 17(6): 713-718.DOI: 10.12006/j.issn.1673-1719.2021.167.Zhou B T , |
null | |
null | 朱艳峰, 2008.一个适用于描述中国大陆冬季气温变化的东亚冬季风指数[J].气象学报, 66(5): 781-788.DOI: 10.11676/qxxb2008.071.Zhu Y F , 2008.An index of East Asian winter monsoon applied to description the Chinese mainland winter temperature changes[J].Acta Meteorologica Sinica, 66(5): 781-788.DOI: 10.11676/qxxb2008.071 . |
/
〈 |
|
〉 |