Thunderstorm Cloud Electrification Model after Coupled Aerosol Module

PDF(949 KB)
Plateau Meteorology ›› 2013, Vol. 32 ›› Issue (2) : 541. DOI: 10.7522/j.issn.1000-0534.2012.00051

Thunderstorm Cloud Electrification Model after Coupled Aerosol Module

Author information +
History +

Abstract

Combination SEET case, change of the maximum water content of water into the matter and the space charge structure in the cloud with time before and after coupled aerosol module were analysed, and the effect of total space charge in thunderstorm cloud on the concentration and spectral distribution of aerosols were discussed. The results showed that it has a good ability to simulate the dynamic and microphysical processes in the thunderstorm cloud after coupled aerosol module with the 250 m resolution. The total space charge in thunderstorm cloud increased with the  aerosol concentration, the large nuclear particle has a considerable contribution to the generation of thunderstorm charge eapecially.

Key words

Aerosol / Electrification mode / Numerical simulation / Space charge

Cite this article

Download Citations
. Thunderstorm Cloud Electrification Model after Coupled Aerosol Module. Plateau Meteorology. 2013, 32(2): 541 https://doi.org/10.7522/j.issn.1000-0534.2012.00051

References

[1]Mansell E R, MacGorman D R, Ziegler C L. Charge structure and lightning sensitivity in a simulated multicell thunderstorm[J]. J Geophys Res, 2005, 110: D12100-D12101.
[2]Khain A R, Pokrovsky D A.Aerosol impact on the dynamics and microphysics of deep convective clouds[J]. Quart J Roy Meteoro Soc, 2005, 131: 2639-2663.
[3]杨慧玲, 肖辉, 洪延超. 气溶胶对冰雹云物理特性影响的数值模拟研究[J]. 高原气象, 2011,30(2): 445-460.
[4]岳治国, 刘晓东, 梁谷. 气溶胶对北京地区不同类型云降水影响的数值模拟[J]. 高原气象, 2011,30(5): 1356-1367.
[5]Segal Y M, Pinsky A K. The role of competition effect in the raindrop formation[J]. Atmos Res, 2007, 83: 106-118.
[6]张杰,唐从国.干旱区一次春季沙尘过程的大气气溶胶垂直分布结构及其特征[J]. 高原气象, 2012, 31(1): 156-166.
[7]宿兴涛, 王汉杰, 宋帅, 等. 近10年东亚沙尘气溶胶辐射强迫与温度响应[J].高原气象, 2011, 30(5): 1300-1307.
[8]Simpson G, Scrase F G. The distribution of electricity in thunderstorm[J]. Proceedings of the Royal Society of London Series A, 1937, 161: 309-352.
[9]Simpson G, Robinson F G. The distribution of electricity in thunderclouds[J]. Proceedings of the Royal Society of London Series A, 1941, 177: 281-329.
[10]Chiu Chinshan. Numerical study of cloud electrification in an axisym-metric, time-dependent cloud model[J]. J Geophys Res, 1978, 83: 5025-5049.
[11]张廷龙, 言穆弘, 张彤, 等. 利用地面电场对中川地区一次雷暴过程电荷结构的研究[J]. 高原气象, 2010,29(6): 1524-1532.
[12]廖向花, 周毓荃, 唐余学, 等. 重庆一次超级单体风暴的综合分析[J]. 高原气象, 2010,29(6): 1556-1564.
[13]巩敏莹, 靳英燕. 西北区东部一次雷暴天气过程的诊断分析[J]. 高原气象, 2009,28(1): 203-208.
[14]Takahashi T. Thunderstorm electrification—A numerical study [J]. J Atmos Sci, 1984, 41: 2541-2558.
[15]言穆弘, 刘欣生, 安学敏,等. 雷暴非感应起电机制的模拟研究. I. 云内因子影响[J]. 高原气象, 1996, 15(4): 425-437.
[16]言穆弘, 刘欣生, 安学敏,等. 雷暴非感应起电机制的模拟研究. Ⅱ. 环境因子影响[J]. 高原气象, 1996, l5(4): 438-447.
[17]Rawlins F. A numerical study of thunderstorm electrification using a 3D model incorporating the ice phase [J]. Quart J Roy Meteor Soc, 1981, 108: 779-800.
[18]郭凤霞, 张义军, 郄秀书, 等. 雷暴云不同空间电荷结构数值模拟研究[J]. 高原气象, 2003, 22 (3): 268-274.
[19]Mansell E R, MacGorman D R, Ziegler C L. Charge structure and lightning sensitivity in a simulated multicell thunderstorm[J]. J Geophys Res, 2005, 110: D12100-D12101.
[20]Williams E R,Rosenfeld D, Madden N, et al. Contrasting convective regimes over the Amazon: Implications for cloud electrification[J]. J Geophys Res, 2002,107(D20), 8082. doi:10.1029/2001JD000380.
[21]谭涌波. 闪电放电与雷暴云电荷、 电位分布相互关系的数值模拟[D]. 合肥: 中国科学技术大学, 2006.
[22]刘校辰, 刘奇俊. 云模式中气溶胶物理过程参数化方案研究概述[J]. 气象, 2006, 32(6): 4-6.
[23]Ziegler C L,MacGorman D R, Dye J E, et al.A model evaluation of non-inductive graupel-ice charging in the early electrification of a mountain thunderstorm[J].J Geophys Res, 1991, 96(D7): 12833-12855.
[24]Pereyra R G,Avila E E, Catellano N E, et al.A laboratory study of graupel charging[J]. J Geophys Res,2000, 105: 20803-20812.
[25]Gardiner B D, Lamb R L, Pitter J, et al. Measurements of initial potential gradient and particle charges in a montana summer thunderstorm[J]. J Geophys Res, 1985, 90(D4): 6079-6086.
[26]Hallett J, Saunders C P R. Charge separation associated with secondary ice crystal production[J]. J Atmos Sci, 1979,36(11): 2230-2235.
[27]Leporini M, Wobrock, Flossmann A I. Simulations of stratocumuli clouds with warm detailed microphysics[C]. Proceedings of the International Conference on Clouds and Precipitation, Bologna, Italy, 18-23 July, 2004.
[28]Meszaros E. Present status of our knowledge on the atmospheric condensation nuclei:Problems of cloud physics[J]. Gidrometeorzdat, 1978,34: 157-170.
[29]Khain A. Notesonthestate-of-artmumericalmodelingofcloudmicrophysics[J]. Atmos Res, 2000, 55: 159-224.
[30]Pruppacher H R, Klett J D. Microphysics of clouds and precipitation[C]. Proceedings of the International Conference on Clouds and Precipitation, Bologna, Italy, 18-23 July, 2004.
[31]Twomey S.The nuclei of natural coud formation.PartⅡ: The supersaturation in natural clouds and the variation of cloud droplet concentration[J]. Geophys Pura Appl, 1959, 43: 243-249.
[32]刘校辰. 气溶胶对暖云影响的数值模拟[D]. 北京: 中国气象科学研究院, 2006.
[33]Khain A et al. Notes on the state of art numerical modeling of cloud microphysics[J]. Atoms Res, 2000, 55: 159-224.
[34]Yin Y, Levin Z, Reisin T G, et al. Tzivion: The effect of giant cloud condensation nuclei on the development of precipitation in convective clouds\_\_A numerical study[J]. Atmos Res, 2000, 53: 91-116.
[35]Yin Y Z, Levin T, Reisin S, et al. Seeding convective clouds with hygroscopic flares: Numerical simulations using a cloud model with detailed microphysics[J]. Appl Meteor, 2000, 39: 1460-1472.
[36]Kogan Y L. The simulation of a convective cloud in a 3-D model with explicit microphysics. Part Ⅰ: Model description and sensitivity experiments[J]. J Atmos Sci, 1991, 48: 1160-1189.
[37]Cohard J M, Jean P P. A comprehensive two-moment warm microphysical bulk scheme 1:description[J]. Meteor Soc, 2000, 126: 1815-1842.
PDF(949 KB)

1003

Accesses

0

Citation

Detail

Sections
Recommended

/