Study on Water Vapor Characteristic of Typical Heavy Snowstorm Case in Northern Xinjiang

PDF(1479 KB)
Plateau Meteorology ›› 2013, Vol. 32 ›› Issue (4) : 1115-1125. DOI: 10.7522/j.issn.1000-0534.2012.00105

Study on Water Vapor Characteristic of Typical Heavy Snowstorm Case in Northern Xinjiang

Author information +
History +

Abstract

Using the daily precipitation at 51 weather stations in the Northern Xinjiang from November to March during 2000—2012 and daily water vapor of NCEP/NCAR 6 h 1°×1° reanalysis data, the water vapor characteristics of 11 typical heavy snowstorm cases were studied. The result shows that the 11 cases are classified into 3 types: West of Northern Xinjiang and along Tianshan edge, north and east of Northern Xinjiang, west of Northern Xinjiang and west Tianshan. There are two main water vapor sources: Near the Mediterranean Sea, the Red Sea or near the Persian Gulf. There are two water vapor transport routes which are west, southwest and northwest, respectively. Water vapor from southwest route is more, that from northwest route is less. The top of water vapor is close to 300 hPa. The strongest water vapor transport level is between 650~750 hPa. Before the every occurrence of 11 heavy snowstorm processes, there are water vapor convergence between 600~1 000 hPa in Northern Xinjiang.There are positive correlations between the snowstorm intensity and water vapor convergence between 600~1 000 hPa, as well as the convergence strength, rang and duration time in Northern Xinjiang. Hence, some lowest values of the strongest water vapor transport, water vapor convergence and the upper and lower level jet streams are resented also and gave useful references for accurate heavy snowstorm forecasting.

Key words

Heavy snowstorm / Water vapor characte / Northern Xinjiang

Cite this article

Download Citations
. Study on Water Vapor Characteristic of Typical Heavy Snowstorm Case in Northern Xinjiang. Plateau Meteorology. 2013, 32(4): 1115-1125 https://doi.org/10.7522/j.issn.1000-0534.2012.00105

References

[1]苗爱梅, 贾利冬, 李智才, 等. “091111”山西特大暴雪过程的流型配置及物理量诊断分析[J]. 高原气象, 2011, 30(4): 969-981.
[2]周倩, 王式功, 尚可政, 等. 2008年10月青藏高原东部一次区域暴雪过程及气候背景分析[J]. 高原气象, 2011, 30(1): 22-29.
[3]张迎新, 张守保, 裴玉杰, 等. 2009年11月华北暴雪过程的诊断分析[J]. 高原气象, 2011, 30(5): 1204-1212.
[4]孙仲毅, 王军, 靳冰凌, 等. 河南省北部一次暴雪天气过程诊断分析[J]. 高原气象, 2010, 29(5): 1338-1344.
[5]张腾飞, 鲁亚斌, 张杰, 等. 一次低纬高原地区达到暴雪天气过程的诊断分析[J]. 高原气象, 2006, 25(4): 696-703.
[6]赵桂香, 杜莉, 范卫东, 等. 山西省大雪天气的分析预报[J]. 高原气象, 2011, 30(3): 727-738.
[7]江志红, 梁卓然, 刘征宇. 2007年淮河流域强降水过程的水汽输送特征分析[J]. 大气科学, 2011, 35(2): 361-372.
[8]张万诚, 万云霞, 任菊章, 等. 水汽输送异常对2009年秋、 冬季云南降水的影响研究[J]. 高原气象, 2011, 30(6): 1534-1542.
[9]董丽娜, 郭品文, 王鹏祥, 等. 7月东亚高空西风急流变化对我国雨带的影响[J]. 高原气象, 2010, 29(2): 286- 296.
[10]张家宝, 邓子风. 新疆降水概论[M]. 北京: 气象出版社, 1987. 276-278.
[11]张雪梅, 江志红, 兰博文. 西北地区水汽输送特征及其年际、 年代际变化[J]. 灾害学, 2010, 25(4): 27-32.
[12]王宝鉴, 黄玉霞, 陶健红, 等. 西北地区大气水汽的区域分布特征及其变化[J]. 冰川冻土, 2006, 28(1): 60-75.
[13]史玉光, 孙照渤. 新疆水汽输送的气候特征及其变化[J]. 高原气象, 2008, 27(2): 310-319.
[14]杨莲梅, 杨涛, 贾丽红, 等. 新疆大-暴雪气候特征及其水汽分析[J]. 冰川冻土, 2005: 27(3): 389-396.
[15]杨莲梅, 史玉光, 汤浩. 新疆春季降水异常的环流和水汽特征[J]. 高原气象, 2010, 29(6): 1464-1473.
[16]杨莲梅, 张云惠, 汤浩. 2007年7月新疆三次暴雨过程的水汽特征分析[J]. 高原气象, 2012, 31(4): 963-973.
[17]刘蕊, 杨青. 新疆大气水汽通量及其净收支的计算与分析[J]. 中国沙漠, 2010, 30(5): 1221-1228.
[18]黄海波, 徐海容. 新疆一次秋季暴雪天气的诊断分析[J]. 高原气象, 2007, 26(3): 624-629.
[19]辛渝, 陈洪武, 张广兴, 等. 新疆年降水量的时空变化特征[J]. 高原气象, 2008, 27(5): 993-1003.
[20]戴新刚, 李维京, 马柱国. 近十几年新疆水汽源地变化特征[J]. 自然科学进展, 2006, 16(12): 1651-1656.
[21]朱乾根, 林锦瑞, 寿绍文等. 天气学原理和方法(第三版)[M]. 北京: 气象出版社, 2000: 637-642.
[22]丁一汇. 高等天气学(第二版)[M]. 北京: 气象出版社, 2005.
[23]苗爱梅, 武捷, 赵海英, 等. 低空急流与山西大暴雨的统计关系及流型配置[J]. 高原气象, 2010, 29(4): 939-946.
[24]何华, 孙绩华. 高低空急流在云南大范围暴雨过程中的作用及共同特征[J]. 高原气象, 2004, 23(5): 629-634.
PDF(1479 KB)

1415

Accesses

0

Citation

Detail

Sections
Recommended

/