Applicability of GLDAS and Climate Change in the Qinghai-Xizang Plateau and Its Surrounding Arid Area

PDF(1312 KB)
Plateau Meteorology ›› 2013, Vol. 32 ›› Issue (3) : 635. DOI: 10.7522/j.issn.1000-0534.2013.00054

Applicability of GLDAS and Climate Change in the Qinghai-Xizang Plateau and Its Surrounding Arid Area

Author information +
History +

Abstract

Some researches show that the hydrological cycle in the Qinghai-Xizang Plateau and its surrounding arid area is particularly sensitive to global climate change. Due to the observations of evaporation and runoff are sparse,  the hydrological cycle change in the study area is certainly limited. Based on the observation driving data, Global Land Data Assimilation System (GLDAS) represents the regional distribution of surface hydrological cycle element, and also give support to the study of regional scale of hydrological cycle change. Firstly, the four climatic regions are divided the Qinghai-Xizang Plateau and its surrounding arid area, the variation characteristics of temperature and rainfall in each climate zone are analyzed. Then the suitability of temperature and precipitation data of GLDAS four land surface models in 1979-2007 is tested. Lastly the space variation of evaporation and runoff and the change of surface hydrological cycle key elements in different climate zones are discussed. The results show that the average temperature of four climate regions in 2000-2007 and 1979-1994 ranging from 0.65 to 0.97  ℃, and grew obviously. Precipitation changes differently, mean of which in arid and semi-arid area in 2000-2007 is more than 14 mm and 25 mm in 1979-1994. GLDAS temperature and precipitation data have high applicability in the Qinghai-Xizang Plateau and its surrounding arid area in 1979-1994. The root-mean-square error beteen GLDAS temperature data and Chinese surface grid temperature data in extreme arid area is only 0.41 ℃. The differences beteen GLDAS data and APHRODITE precipitation data in four climate region are all less than 0.18 mm·d-1. The water cycle in study area is in dynamic balance during the research period. But the data quality of 2000-2007 has yet to be improved. Runoff and evaporation increasing area grew significantly, and the amplitude have risen sharply, but changing magnitude is uncertain. The change characteristics of hydrological cycle key elements in most areas of Xinjiang Province are consistent with the scientific hypothesis of climatic shift from warm-dry to warm-humid previous proposed. The precipitation of this area is mainly used for evaporation. In the recent years,  the hydrological cycle is strengthened. Multi-year average runoff coefficient are less than 0.2.

Key words

Land assimilation da / Qinghai-Xizang Plate / Hydrological cycle

Cite this article

Download Citations
. Applicability of GLDAS and Climate Change in the Qinghai-Xizang Plateau and Its Surrounding Arid Area. Plateau Meteorology. 2013, 32(3): 635 https://doi.org/10.7522/j.issn.1000-0534.2013.00054

References

[1]石玉林. 中国自然资源丛书(综合卷·海洋资源)[M]. 北京: 中国环境科学出版社, 1995.
[2]张强, 赵映东, 张存杰, 等. 西北干旱区水循环与水资源问题[J]. 干旱气象, 2008, 26(2): 1-8.
[3]范广洲, 程国栋. 青藏高原隆升对西北地区降水量变化的影响[J]. 高原气象, 2003, 22(增刊): 67-74.
[4]陈豫英, 钱正安, 王式功, 等. 中蒙干旱半干旱区降水时空间变化特征分析: (II) 综合气候分区及各分区降水时间变化的进一步分析[J]. 高原气象, 2011, 30(1): 13-21.
[5]钱正安, 宋敏红, 李万源, 等. 全球、 中蒙干旱区及其部分地区降水分布细节[J]. 高原气象, 2011, 30(1): 1-12.
[6]Lan Yongchao, Kang Ersi, Zhang Jishi, et al. Study on the mutual transformation between groundwater and surface water resources in the Hexi inland arid regions[J]. Adv Earth Sci, 2002, 17(4): 535-545.
[7]姚檀栋, 朱立平. 青藏高原环境变化对全球变化的响应及其适应对策[J]. 地球科学进展, 2006, 21(5): 459-464.
[8]王少影, 张宇, 吕世华, 等. 玛曲高寒草甸地表辐射与能量收支的季节变化[J]. 高原气象, 2012, 31(3): 605-614.
[9]栾晨, 宋敏红, 蔡英, 等. 西北区西部夏半年强降水分布与变化特征[J]. 高原气象, 2012, 31(3): 629-637.
[10]卢爱刚, 何元庆, 张忠林, 等. 中国大陆对全球变暖响应的区域敏感性分析[J]. 冰川冻土, 2005, 27(6): 827-832.
[11]曲玮, 梅肖冰. 西北水资源研究综述[J]. 甘肃社会科学, 2002(6): 23-31.
[12]赵文智, 程国栋. 干旱区生态水文过程研究若干问题评述[J]. 科学通报, 2001, 46(22): 1851-1858.
[13]Liu X, Chen B. Climatic warming in the Tibetan Plateau during recent decades[J]. Inter J Climatol, 2000, 20: 1729-1742.
[14]施雅风, 沈永平, 李栋梁, 等. 中国西北气候由暖干向暖湿转型的特征和趋势探讨[J]. 第四纪研究, 2003, 23(1): 152-164.
[15]姜逢清, 朱 诚, 胡汝骥. 1960-1997年新疆北部降水序列的趋势探测[J]. 地理科学, 2002, 22(6): 669-672.
[16]张丽旭, 魏文寿. 天山西部中山带积雪变化趋势与气温和降水的关系 以巩乃斯河谷为例[J]. 地理科学, 2002, 22(1): 67-71.
[17]施雅风, 沈永平, 胡汝骥. 西北气候由暖干向暖湿转型的信号、 影响和前景初步探讨[J]. 冰川冻土, 2002, 24(3): 219-226.
[18]秦大河. 中国气候与环境演变(上)[J]. 资源环境与发展, 2007(3): 1-4.
[19]秦大河, 丁一汇, 王绍武, 等. 中国西部生态环境变化与对策建议[J]. 地球科学进展, 2002, 17(3): 314-319.
[20]颜开, 余平佬, 熊珊珊. 自然界水循环中的水量平衡原理与干旱研究[J]. 水文, 2011, 31(2): 38-41.
[21]刘国纬. 水文循环的大气过程[M]. 北京: 科学出版社, 1997.
[22]Gao G, Chen D L, Xu C Y, et al. Trend of estimated actual evapotranspiration over China during 1960-2002[J]. Geophys Res, 112:D11120, doi: 10.1029/2006JD008010.
[23]Cao J, Qin D, Kang E, et al. River discharge changes in the Qinghai-Tibet Plateau[J]. Chinese Sci Bull, 2006, 51(5): 594-600.
[24]Wang A, Zeng X. Evaluation of multireanalysis products with in situ observations over the Tibetan Plateau[J]. J Geophys Res, 2012, 117, D05102, doi:10.1029/2011JD016553.
[25]Wang F, Wang L, Koike T, et al. Evaluation and application of a fine-resolution global data set in a semiarid mesoscale river basin with a distributed biosphere hydrological model[J]. J Geophys Res, 2011, 116, D21108, doi:10.1029/2011 JD015990.
[26]陈晓丽, 沈学顺, 陈活泼. 陆面过程对2007年淮河流域强降水数值预报的影响分析[J]. 热带气象学报, 2010(6): 667-679.
[27]陈莹莹, 施建成, 杜今阳, 等. 基于GLDAS的中国区地表能量平衡数值试验[J]. 水科学进展, 2009, 20(1): 25-31.
[28]Rodell M, Houser P R, Jambo R U, et al. The global land data assimilation system[J]. Bull Amer Meteor Soc, 2004, 85(3): 381-394.
[29]Yatagai A, Arakawa O, Kamiguchi K, et al. 2009. A 44-year daily gridded precipitation dataset for Asia based on a dense network of rain gauges[J]. SOLA, 5: 137-140, doi:10.2151/sola.2009-035.
[30]韩振宇, 周天军. APHRODITE高分辨率逐日降水资料在中国大陆地区的适用性[J]. 大气科学, 2012, 36(2): 361-373.
[31]Gao Y H, Xue Y K, Wen P. Assessment of dynamic downscaling of the extreme rainfall over East Asia using a regional climate model[J]. Adv Atmos Sci, 2011, 28(5): 1077-1098.
[32]张强, 阮新, 熊安元. 近57年我国气温格点数据集的建立和质量评估[J]. 应用气象学报, 2009, 20(4): 386-393.
[33]Yang Kun, Ye Baisheng, Zhou Degang, et al. Response of hydrological cycle to recent climate changes in the Tibetan Plateau[J]. Climatic Change, 2011, 109: 517-534.
[34]汤懋苍. 高原季风研究的若干进展[J]. 高原气象, 1993, 12(1): 95-101.
[35]Hua l R. README Document for Global Land Data Assimilation System Version 1 (GLDAS-1) [EB/OL]. http://ldas.gsfc.nasa.gov/gldas/GLDASforcing.php, 15 March 2011.
[36]李永华, 徐海明, 刘德. 2006年夏季西南地区东部特大干旱及其大气环流异常[J]. 气象学报, 2009, 67(1): 122-132.
[37]王有民. “派比安”、 “桑美”重创华南、 江南 重庆、 四川遭遇特大伏旱(2006年8月)[J]. 气象, 2006, 32(11): 124.
[38]Chen L Q, Liu C M, Li Y P, et al. Impacts of climatic factors on runoff coefficients in source regions of the Huanghe River[J]. Chinese Geograph Sci, 2007, 17(1): 47-55.
[39]郭华, 姜彤, 王艳君, 等. 1955—2002年气候因子对鄱阳湖流域径流系数的影响[J]. 气候变化研究进展, 2006, 2(5): 217-222.
[40]Lars Gottschalk, Rolf Weingartner. Distribution of peak flow derived from a distribution of rainfall volume and runoff coefficient, and a unit hydrograph[J]. J Hydrology, 1998, 208 (3-4): 148-162.
[41]Onstad G D, Canfield D E, Quay P D, et al. Article Sources of particulate organic matter in rivers from the continental USA: Lignin phenol and stable carbon isotope compositions[J]. Geochimica et Cosmochimica Acta, 2000, 64(20): 3539-3546.
PDF(1312 KB)

1347

Accesses

0

Citation

Detail

Sections
Recommended

/