Please wait a minute...
Adv search
  2015, Vol. 34 Issue (2): 534-545    DOI: 10.7522/j.issn.1000-0534.2013.00193
    
Simulation of Three-Dimensional Fractal Structure of Lightning in a Thunderstorm Model
GUO Fengxia1,2, WANG Haoliang1,2, SUN Jing3, WU Xin1,2, LIANG Mengxue1,2
1. Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science & Technology, Nanjing 210044, China;
2. Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, Nanjing University of Information Science & Technology, Nanjing 210044, China;
3. Hubei Key Laboratory for Heavy Rain Monitoring and Warning Research, Institute of Heavy Rain, China Meteorological Administration, Wuhan 430074, China
Download:  PDF (4478KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The lightning parameterization proposed by Mansell has been improved in threshold value for initiation and the redistribution of induced charge on channel, and then it is introduced into a three-dimensional dynamic-electrification coupled model in order to improve the simulation capacity to electrical activity of the cloud model. The simulation of a thunderstorm storm during Severe Thunderstorm Electrification and Precipitation Study (STEPS) and an ideal thunderstorm in mid-latitude region reveal the lightning simulated by the model, which includes a new lightning parameterization, is in good agreement with the observed result in development character and geometric construction of discharge. And the simulation result shows: the type and polarity of flash is depend on the charge structure and the position of initiation point, negative CG flashes occur only when a lower positive charge center exists below the main negative charge region, and the initiation points of negative CG flash are all with a high negative potential. The sedimentation of induced charge on lightning channel will change the charge of hydrometeors nearby the channel, and it plays an important role in the formation of complex charge distribution. The CG flash and the IC flash channels simulated from the lightning model have the fractal feature with fractal dimension of 1.47 and 1.69 respectively. Sensitivity analysis to threshold value for initiation shows that the effect of the increase of threshold value for initiation is to increase the time required to produce the first flash and to decrease the total number of flash. The first flash time is earliest when the breakeven threshold is used. The ratio of IC flash and CG flash is lesser when use uniform breakdown threshold (100 kV, 150 kV, 200 kV) than breakeven threshold and it best closes the observation result when breakeven threshold is used.
Key words:  Thunderstorm model      Lightning parameterization      Lighting fractal structure      Induced charge      Charge structure     
Received:  21 August 2013      Published:  24 April 2015
P427.3  

Cite this article: 

GUO Fengxia, WANG Haoliang, SUN Jing, WU Xin, LIANG Mengxue. Simulation of Three-Dimensional Fractal Structure of Lightning in a Thunderstorm Model. , 2015, 34(2): 534-545.

URL: 

http://www.gyqx.ac.cn/EN/10.7522/j.issn.1000-0534.2013.00193     OR     http://www.gyqx.ac.cn/EN/Y2015/V34/I2/534

[1] Marshall T C, Winn W P. Measurements of charged precipitation in a New Mexico thunderstorm: Lower positive charge centers[J]. J Geophys Res: Oceans (1978-2012), 1982, 87(C9): 7141-7157.
[2] Helsdon J H, Wu G, Farley R D. An intracloud lightning parameterization scheme for a storm electrification model[J]. J Geophys Res: Atmos(1984-2012), 1992, 97(D5): 5865-5884.
[3] Ziegler C L, MacGorman D R. Observed lightning morphology relative to modeled space charge and electric field distributions in a tornadic storm[J]. J Atmos Sci, 1994, 51(6): 833-851.
[4] 张廷龙, 杨静, 楚荣忠, 等. 平凉一次雷暴云内的降水粒子分布及其电学特征的探讨[J]. 高原气象, 2012, 31(4): 1091-1099.
[5] 王芳, 肖稳安, 雷恒池, 等. 吉林地区一次雷暴云个例电和云微物理特征的模拟分析[J]. 高原气象, 2009, 28(2): 385-394.
[6] 赵鹏国, 周筠珺, 邓德文, 等. 雷暴微物理过程对电活动影响的数值模拟研究[J]. 高原气象, 2013, 32(3): 884-893, doi:10.7522/j.issn.1000-0534.2012.00082.
[7] 郭凤霞, 孙京. 雷暴云起电机制及其数值模拟的回顾与进展[J]. 高原气象, 2012, 31(3): 862-874.
[8] 王宁宁, 谭涌波, 师正, 等. 耦合气溶胶模块的雷暴云起电模式[J]. 高原气象, 2013, 32(2): 541-548, doi:10.7522/j.issn.1000-0534.2012.00051.
[9] 吴学珂, 袁铁, 刘冬霞, 等. 山东半岛一次强飑线过程地闪与雷达回波关系的研究[J]. 高原气象, 2013, 32(2): 530-540, doi:10.7522/j.issn.1000-0534.2012.00050.
[10] Takahashi T. Determination of lightning origins in a thunderstorm model[J]. J Meteor Soc Japan, 1987, 65(5): 777-794.
[11] Rawlins F. A numerical study of thunderstorm electrification using a three dimensional model incorporating the ice phase[J]. Quart J Roy Meteor Soc, 1982, 108(458): 779-800.
[12] Kasemir H W. A contribution to the electrostatic theory of a lightning discharge[J]. J Geophy Res, 1960, 65(7): 1873-1878.
[13] MacGorman D R, Straka J M, Ziegler C L. A lightning parameterization for numerical cloud models[J]. J Appl Meteor, 2001, 40(3): 459-478.
[14] Mansell E R, MacGorman D R, Ziegler C L, et al. Simulated three-dimensional branched lightning in a numerical thunderstorm model[J]. J Geophys Res, 2002, 107(D9): 4075.
[15] Wiesmann H J, Zeller H R. A fractal model of dielectric breakdown and prebreakdown in solid dielectrics[J]. J Appl Phys, 1986, 60(5): 1770-1773.
[16] Tan Y, Tao S, Zhu B. Fine-resolution simulation of the channel structures and propagation features of intracloud lightning[J]. Geophys Res Lett, 2006, 33(9): L09809, doi:10.1029/2005GL025523.
[17] Barthe C, Molinié G, Pinty J P. Description and first results of an explicit electrical scheme in a 3D cloud resolving model[J]. Atmos Res, 2005, 76(1): 95-113.
[18] Lang T J, Miller L J, Weisman M, et al. The severe thunderstorm electrification and precipitation study[J]. Bull Ameri Meteor Soc, 2004, 85(8): 1107-1125.
[19] Weisman M L, Klemp J B. The dependence of numerically simulated convective storms on vertical wind shear and buoyancy[J]. Mon Wea Rev, 1982, 110(6): 504-520.
[20] 孔凡铀, 黄美元, 徐华英. 对流云中冰相过程的三维数值模拟I. 模式建立及冷云参数化[J]. 大气科学, 1990, 14 (4): 441-453.
[21] 孙安平, 言穆弘, 张义军, 等. 三维强风暴动力-电耦合数值模拟研究Ⅰ: 模式及其电过程参数化方案[J]. 气象学报, 2002, 60(6): 722-731.
[22] Hager W W. A discrete model for the lightning discharge[J]. J Computational Physics, 1998, 144(1): 137-150.
[23] Solomon R, Baker M. Lightning flash rate and type in convective storms[J]. J Geophys Res: Atmos (1984-2012), 1998, 103(D12): 14041-14057.
[24] Marshall T C, McCarthy M P, Rust W D. Electric field magnitudes and lightning initiation in thunderstorms[J]. J Geophys Res: Atmos (1984-2012), 1995, 100(D4): 7097-7103.
[25] Saunders C P R, Keith W D, Mitzeva R P. The effect of liquid water on thunderstorm charging[J]. J Geophys Research: Atmos (1984-2012), 1991, 96(D6): 11007-11017.
[26] 张义军, Paul R K, 刘欣生, 等. 闪电放电通道的三维结构特征[J]. 高原气象, 2003, 22(3): 217-220.
[27] 张义军, Krehbiel P R, 刘欣生. 雷暴中的反极性放电和电荷结构[J] .科学通报, 2002, 47(15): 1192-1195.
[28] Qie X, Zhang T, Zhang G, et al. Electrical characteristics of thunderstorms in different plateau regions of China[J]. Atmos Res, 2009, 91(2): 244-249.
[29] Cui H, Qie X, Zhang Q, et al. Intracloud discharge and the correlated basic charge structure of a thunderstorm in Zhongchuan, a Chinese Inland Plateau region[J]. Atmos Res, 2009, 91(2): 425-429.
[30] Qie X, Zhang T, Chen C, et al. The lower positive charge center and its effect on lightning discharges on the Tibetan Plateau[J]. Geophys Res Lett, 2005, 32(5): L05814, doi:10.1029/2004GL022162.
[31] Williams E R. The tripole structure of thunderstorms[J]. J Geophys Res: Atmos (1984-2012), 1989, 94(D11): 13151-13167.
[32] Wiens K C, Rutledge S A, Tessendorf S A. The 29 June 2000 supercell observed during STEPS. Part II: Lightning and charge structure[J]. J Atmos Sci, 2005, 62(12): 4151-4177.
[33] Tessendorf S A, Rutledge S A, Wiens K C. Radar and lightning observations of normal and inverted polarity multicellular storms from STEPS[J]. Mon Wea Rev, 2007, 135(11): 3682-3706.
[34] Mansell E R, Ziegler C L, Bruning E C. Simulated electrification of a small thunderstorm with two-moment bulk microphysics[J]. J Atmos Sci, 2010, 67(1): 171-194.
[35] Coleman L M, Marshall T C, Stolzenburg M, et al. Effects of charge and electrostatic potential on lightning propagation[J]. J Geophys Res: Atmos(1984-2012), 2003, 108(D9): 4298.
[36] Tsonis A A. A fractal study of dielectric breakdown in the atmosphere[M]. Non-Linear Variability in Geophysics. Springer Netherlands, 1990: 167-174.
[37] Mackerras D, Darveniza M, Orville R E, et al. Global lightning: Total, cloud and ground flash estimates[J]. J Geophys Res: Atmos (1984-2012), 1998, 103(D16): 19791-19809.
[38] Boccippio D J, Cummins K L, Christian H J, et al. Combined satellite- and surface-based estimation of the intracloud-cloud-to-ground lightning ratio over the continental United States[J]. Mon Wea Rev, 2001, 129(1): 108-122.
[1] . On the Research Progress of the Subtropical EastAsian Monsoon and Related Problem[J]. PLATEAU METEOROLOGY, 2008, 27(增刊): 1 -7 .
[2] . [J]. PLATEAU METEOROLOGY, 2010, 29(3): 737 -743 .
[3] . [J]. PLATEAU METEOROLOGY, 2010, 29(1): 109 -114 .
[4] . Effect of the Cloud-Top Height on Back-Scattered UltravioletRadiation Measuring Total Ozone[J]. PLATEAU METEOROLOGY, 2009, 28(3): 647 -651 .
[5] . [J]. PLATEAU METEOROLOGY, 2010, 29(3): 755 -762 .
[6] . Analysis on Cloud Vertical Structure over China andIts Neighborhood Based on CloudSat Data[J]. PLATEAU METEOROLOGY, 2011, 30(1): 38 -52 .
[7] . [J]. PLATEAU METEOROLOGY, 2010, 29(5): 1261 -1269 .
[8] . Characteristic  Analyses on Hydrological and Related Meteorological
Factors on the North Slope of Mount Qomolangma
[J]. PLATEAU METEOROLOGY, 2013, 32(1): 31 -37 .
[9] HOU Wei, ZHANG Da-Quan, QIAN Zhong-Hua, FENG Guo-Lin. Research about the Extreme High Temperature Event and Its Composite
Index Based on Stochastic Re-Sort Detrended Fluctuation Analysis
[J]. PLATEAU METEOROLOGY, 2012, 31(2): 329 -341 .
[10] LIU Mei, ZHANG Bei, YU Jian-Wei, HU Luo-Lin, GAO 苹. Characteristics of Upper Energy Transport and Coupling of
Meteorology  Elements on Upper and Lower Levels during
Rainstorm Process in Meiyu Season of Jiangsu
[J]. PLATEAU METEOROLOGY, 2012, 31(3): 777 -787 .