Please wait a minute...
Adv search
  2015, Vol. 34 Issue (2): 318-326    DOI: 10.7522/j.issn.1000-0534.2014.00020
    
Study on Relationship of Low Frequency Oscillation between Summer Monsoon in Qinghai-Xizang Plateau and Summer Monsoon in South China Sea
WAN Chao1, FAN Guangzhou1,2, HUA Wei1, ZHANG Yongli1, ZHU Lihua1, LIAN Fan1
1. Chengdu University of Information Technology, Plateau Atmosphere and Environment Key Laboratory of Sichuan Province, Chengdu 610225, China;
2. Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science & Technology, Nanjing 210044, China
Download:  PDF (8647KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The possible relationship of the low frequency oscillation between summer monsoon in the Qinghai-Xizang Plateau and summer monsoon in the South China Sea are studied by using the daily average NCEP/NCAR reanalysis data for the time period of 1948-2010. The results show that the areas of the Qinghai-Xizang Plateau monsoon and the South China Sea monsoon were obvious periodic oscillation of 30~50 days in the summer half year, and both exist obvious phase relationship in this apparent oscillation, namely low frequency oscillation of the South China Sea monsoon are in advance than summer monsoon in the Qinghai-Xizang Plateau about 3/4 phase, and the 500 hPa and 850 hPa wind field studies have reached the same conclusion. Moreover, one of the possible reasons of the phase relationship between the two kinds of monsoon is the low frequency transmission from the South China Sea to the Qinghai-Xizang Plateau starting from late March.
Key words:  Summer monsoon in the Qinghai-Xizang Plateau      Summer monsoon in the South China Sea      Low frequency oscillation with 30~50 days period     
Received:  02 August 2013      Published:  24 April 2015
P466  

Cite this article: 

WAN Chao, FAN Guangzhou, HUA Wei, ZHANG Yongli, ZHU Lihua, LIAN Fan. Study on Relationship of Low Frequency Oscillation between Summer Monsoon in Qinghai-Xizang Plateau and Summer Monsoon in South China Sea. , 2015, 34(2): 318-326.

URL: 

http://www.gyqx.ac.cn/EN/10.7522/j.issn.1000-0534.2014.00020     OR     http://www.gyqx.ac.cn/EN/Y2015/V34/I2/318

[1] Madden R D, Julian P. Detection of a 40~50 day oscillation in the zonal wind in the tropical Pacific[J]. J Atmos Sci, 1971, 28(5): 702-708.
[2] Madden R D, Julian P. Description of globe-scale circulation cells in the tropics with a 40~50 day period[J]. J Atmos Sci, 1972, 29(6): 1109-1123.
[3] Krishnamurti T N, Gadgil S. On the structure of 30 to 50 day mode over the globe during FGGE[J]. Tellus, 1985, 37: 336-360.
[4] 李崇银. 30~60天大气振荡的全球特征[J]. 大气科学, 1991, 15(3): 66-76.
[5] 丁一汇, 梁萍. 基于MJO的延伸期预报[J]. 气象, 2010, 36(7): 111-122.
[6] 梁萍, 丁一汇. 强降水过程气候态季节内振荡及其在延伸期预报中的应用[J]. 高原气象, 2013, 32(5): 1329-1338, doi: 10.7522/j.issn.1000-0534.2012.00125.
[7] 孙国武, 信飞, 孔春燕, 等. 大气低频振荡与延伸期预报[J]. 高原气象, 2010, 29(5): 1142-1147.
[8] 孙国武, 孔春燕, 信飞, 等. 天气关键区大气低频波延伸期预报方法[J]. 高原气象, 2011, 30(3): 594-599.
[9] 孙国武, 李震坤, 冯建英. 西南地区两次严重干旱事件与大气低频振荡的研究[J]. 高原气象, 2014, 33(6): 1562-1567, doi: 10.7522/j.issn.1000-0534.2013.00166.
[10] 章基嘉, 孙国武, 陈葆德. 青藏高原大气低频变化的研究[M]. 北京: 气象出版社, 1991: 1-50.
[11] 孙国武, 陈葆德. 青藏高原上空大气低频波的振荡及其经向传播[J]. 大气科学, 1988, 12(3): 250-257.
[12] 章基嘉, 彭永清, 王鼎良. 夏季青藏高原各热源分量的时频特征及高度场对它们的响应[C]//青藏高原气象科学实验试验文集编辑组主编. 青藏高原气象科学实验试验文集. 北京: 科学出版社, 1984: 182-192.
[13] Nitta T. Observational study of heat sources over the eastern Tibetan Plateau during the summer monsoon[J]. J Meteor Soc Japan, 1983, 61: 590-605.
[14] 贺懿华, 李才媛, 金琪, 等. 夏季青藏高原TBB低频振荡及其与华中地区旱涝的关系[J]. 高原气象, 2006, 25(4): 658-664.
[15] 张鹏飞, 李国平, 尹建昌. 青藏高原西部地表热通量输送的低频特征[J]. 高原气象, 2009, 28 (3): 556-563.
[16] 彭茹, 武炳义. 1982/1983 年季风准双周振荡的位相传播及地理特征[J]. 应用气象学报, 1995, 6(2): 206-212.
[17] 张鹏飞, 李国平, 王旻燕, 等. 青藏高原低涡群发性与10~30天大气低频振荡关系的初步研究[J]. 高原气象, 2010, 29(5): 1102-1110.
[18] 林爱兰. 南海夏季风的低频特征[J]. 热带气象学报, 1998, 14: 113-118.
[19] 穆明权, 李崇银. 1998年南海夏季风的爆发与大气季节内振荡的活动[J]. 气候与环境研究, 1998, 5: 375-387.
[20] 徐国强, 朱乾根. 1998年南海夏季风低频振荡特征分析[J]. 热带气象学报, 2002, 18(4): 309-316.
[21] Li Chongyin, Long Zhenxia, Zhang Qingyun. Strong/weak summer monsoon activity over the South China Sea and atmospheric intraseasonal oscillation[J]. Adv Atmos Sci, 2001, 18: 1146-1160.
[22] 彭楚明, 何有海, 关翠华, 等. 南海夏季风爆发与海温和大气对流的低频变化[J]. 高原气象, 1999, 18(4): 603-612.
[23] 巩远发, 许美玲, 何金海, 等. 夏季青藏高原东部降水变化与副热带高压带活动的研究[J]. 气象学报, 2006, 64(1): 90-99.
[24] 李云康, 孙照渤, 章基嘉. 夏半年青藏高原及其附近30~60天振荡与大气环流的关系[J]. 南京气象学院学报, 1991, 14(3): 483-488.
[25] 李跃清. 100 hPa 30~50天大气低频振荡与南亚高压东西变动的关系[J]. 四川气象, 1991, 11(4): 7-11.
[26] 徐国强, 朱乾根. 1998年青藏高原大气低频振荡的结构特征分析[J]. 南京气象学院学报, 2000, 23(4): 505-513.
[27] 刘新, 李伟平, 许晃雄, 等. 青藏高原加热对东亚地区夏季降水的影响[J]. 高原气象, 2007, 26(6): 1287-1292.
[28] Kalnay E, Kanamitsu M, Kistler R, et al. The NCEP/NCAR 40-year reanalysis project[J]. Bull Amer Meteor Soc, 1996, 77: 4372-4471.
[29] 魏凤英编著.现代气候统计诊断与预测技术[M]. 北京: 气象出版社, 1999.
[30] 汤懋苍, 梁娟, 邵明镜, 等. 高原季风年际变化的初步分析[J]. 高原气象, 1984, 3(3): 76-82.
[31] 李崇银, 张利平. 南海夏季风活动及其影响[J]. 大气科学, 1999, 23(3): 257-266.
[32] 白虎志, 马振锋, 董文杰. 青藏高原地区季风特征及与我国气候异常的联系[J]. 应用气象学报, 2005, 16(4): 484-491.
[33] 白虎志, 谢金南, 李栋梁. 近40年青藏高原季风变化的主要特征[J]. 高原气象, 2001, 20(1): 22-27.
[34] 钟珊珊, 何金海, 管兆勇, 等. 1961-2001年青藏高原大气热源的气候特征[J]. 气象学报, 2009, 67(3): 407-416.
[35] 索渺清, 丁一汇. 冬半年副热带南支西风槽结构和演变特征研究[J]. 大气科学, 2009, 33(3): 425-442.
[1] YIN Xian-zhi-;ZHANG Qiang;XU Qi-yun;XUE Wan-xiao;GUO Hui;SHI Zhi-juan. Characteristics of Climate Change in Qilian MountainsRegion in Recent 50 Years[J]. PLATEAU METEOROLOGY, 2009, 28(1): 85 -90 .
[2] SHEN Zhen-xing-;HUO Zong-quan;HAN Yue-mei;CAO Jun-ji;ZHAO Jing-lian;ZHANG Ting. Chemical Composition of Water-Soluble Ions in Aerosolsover Xi′an in Heating and Non-Heating Seasons[J]. PLATEAU METEOROLOGY, 2009, 28(1): 151 -158 .
[3] . Temporal and Spatial Distributions of Cloud Coverover Southwest China in Recent 46 Years[J]. PLATEAU METEOROLOGY, 2011, 30(2): 339 -348 .
[4] . Variations of Long-Term Palmer Drought Index in Recent354 Years in Yili Based on Tree-Ring Record[J]. PLATEAU METEOROLOGY, 2011, 30(2): 355 -362 .
[5] . Climatic Changes of Rainfall and Rain Days in Yunnan Province[J]. PLATEAU METEOROLOGY, 2011, 30(4): 1027 -1033 .
[6] . Case Study of Bow Echo, Severe Convective Storm and Merger ProcessⅠ: Taking Single Doppler Radar Data as a Case[J]. PLATEAU METEOROLOGY, 2011, 30(4): 1067 -1077 .
[7] . Case Study of Bow Echo, Severe Convective Storm and Merger ProcessⅡ: Analysis on Three-dimensional Wind Field Retrievedby Dual Doppler Radar[J]. PLATEAU METEOROLOGY, 2011, 30(4): 1078 -1086 .
[8] . Simulation and Analysis of a Gust Front Process[J]. PLATEAU METEOROLOGY, 2011, 30(4): 1087 -1095 .
[9] . An Application of Microscale Meteorological Modelto Environment Impact Assessment[J]. PLATEAU METEOROLOGY, 2008, 27(增刊): 203 -209 .
[10] . [J]. PLATEAU METEOROLOGY, 2010, 29(4): 864 -874 .