Study of Systematic Bias Corrected Method in CMIP5 Decadal Experiments of BCC_CSM1.1 Climate Model on Tropical SST

GAO Feng;WU Tongwen;XIN Xiaoge

PDF(9788 KB)
Plateau Meteorology ›› 2016, Vol. 35 ›› Issue (5) : 1364-1375. DOI: 10.7522/j.issn.1000-0534.2015.00083

Study of Systematic Bias Corrected Method in CMIP5 Decadal Experiments of BCC_CSM1.1 Climate Model on Tropical SST

Author information +
History +

Abstract

The decadal prediction component of CMIP5 experiment aims at improving our understanding of physical climate system and ability to predict its evolution in the near term. These decadal simulations make it possible and meaningful to assess model skill in forecasting climate under the observed ocean initial conditions. In this study, the decadal hindcast and prediction experiment carried out by BCC_CSM1.1 climate model for CMIP5 was used to evaluate the model's prediction capability of SST in tropical area. Using a model bias correcting method, we corrected the raw model simulation results and examined whether this method can improve the model's hindcast performance in tropical SST. By analyzing the decadal experiment which is conducted every 5 years from 1960 to 1990, results show as following:in spite of initiation with observation SST was taken into account in the decadal hindcast experiments, the model still underperforms in simulating the realistic SST evolution. The relationship between different groups of the experiments and the observation only show consistent positive correlation in western Pacific and the tropical North Atlantic Ocean area, while hindcast skills of corrected model simulation are improved significantly in the global ocean area, particularly in the southern Indian and tropical Pacific Ocean area. In the tropical western Pacific, the space correlation efficient between corrected model simulation and observation is above 0.8 in all the 120 months after the predicted time. The corrected model simulations can reproduce the mode of the Pacific SST in the observation. Therefore, the bias correcting method in the present study is important and useful for reducing the systematic bias and conducting the climate prediction of tropical SST on time-scales.

Key words

Decadal prediction / Model bias / BCC_CSM1.1 / CMIP5

Cite this article

Download Citations
GAO Feng , WU Tongwen , XIN Xiaoge. Study of Systematic Bias Corrected Method in CMIP5 Decadal Experiments of BCC_CSM1.1 Climate Model on Tropical SST. Plateau Meteorology. 2016, 35(5): 1364-1375 https://doi.org/10.7522/j.issn.1000-0534.2015.00083

References

[1]Bellenger H, Guilyardi E, Leloup J, et al.2014.ENSO representation in climate models:from CMIP3 to CMIP5[J].Climate Dyn, 42(7-8):1999-2018.DOI:10.1007/s00382-013-1783-z.
[2]Doblas-Reyes F J, Andreu-Burillo I, Chikamoto Y, et al.2013.Initialized near term regional climate change prediction[J].Nature Communications, 4:1715.DOI:10.1038/ncomms2704.
[3]Oldenborgh G J V, Philip S Y, Collins M.2005.El Ni?o in a changing climate:A multi-model study[J].Ocean Science, European Geosciences Union, 1 (2):81-95.DOI:1812-0792/os/2005-1-81.
[4]Goddard L, Kumar A, Solomon A, et al.2013.A verification framework for interannual-to-decadal predictions experiments[J].Climate Dyn, 40(1-2):245-272.DOI:10.1007/s00382-012-1481-2.
[5]Guilyardi E, Cai W, Collins M, et al.2012.New strategies for evaluating ENSO processes in climate models[J].Bull Amer Meteor Soc, 93(2):235-238.DOI:10.1175/BAMS-D-11-00106.1.
[6]Guilyardi E, Wittenberg A, Fedorov A, et al.2009.Understanding El Ni?o in ocean-atmosphere general circulation models:progress and challenges[J].Bull Amer Meteor Soc, 90:325.DOI:10.1175/2008BAMS2387.1.
[7]Ham Y, Kug J.2014.ENSO phase-locking to the boreal winter in CMIP3 and CMIP5 models[J].Climate Dyn, 43(1-2):305-318.DOI:10.1007/s00382-014-2064-1.
[8]International CLIVAR Project Office (ICPO).2011.Data and bias correction for decadal climate predictions [M/OL].CLIVAR Publication Series, 2011, NO150:6.http://www.wcrp-climate.org/decadal.[2015-06-04]
[9]Kao H Y, Yu J Y.2009.Contrasting eastern-pacific and central-pacific types of ENSO[J].J Climate, 22:615-632.DOI:10.1175/2008JCLI2309.1.
[10]Keenlyside N S, Latif M, Jungclaus J, et al.2008.Advancing decadal-scale climate prediction in the North Atlantic sector[J].Nature, 453(7191):84-88.DOI:10.1038/nature06921.
[11]Knight J R, Andrews M B, Smith D M, et al.2014.Predictions of climate several years ahead using an improved decadal prediction system[J].J Climate, 27(20):7550-7567.DOI:10.1175/JCLI-D-14-00069.1.
[12]Meehl G A, Goddard L, Murphy J, et al.2009.Decadal prediction:Can it be skillful[J].Bull Amer Meteor Soc, 90(10):1467-1485.DOI:10.1175/2009BAMS2778.1.
[13]Pohlmann H, Jungclaus J H, K?hl A, et al.2009.Initializing decadal climate predictions with the GECCO oceanic synthesis:Effects on the North Atlantic[J].J Climate, 22(14):3926-3938.DOI:10.1175/2009JCLI2535.1.
[14]Smith D M, Cusack S, Colman A W, et al.2007.Improved surface temperature prediction for the coming decade from a global climate model[J].Science, 317(5839):796-799.DOI:10.1126/science.1139540.
[15]Taschetto A S, Gupta A S, Jourdain N C, et al.2014.Cold tongue and warm pool ENSO events in CMIP5:Mean state and future projections[J].J Climate, 27(8):2861-2885.DOI:10.1175/JCLI-D-13-00437.1.
[16]Taylor K E, Stouffer R J, Meehl G A.2012.An overview of CMIP5 and the experiment design[J].Bull Amer Meteor Soc, 93(4):485-498.DOI:10.1175/BAMS-D-11-00094.1.
[17]Wang B, Liu M, Yu Y, et al.2013.Preliminary evaluations of FGOALS-g2 for decadal predictions[J].Adv Atmos Sci, 30(3):674-683.DOI:10.1007/s00376-012-2084-x.
[18]Wang G, Dommenget D, Frauen C.2015.An evaluation of the CMIP3 and CMIP5 simulations in their skill of simulating the spatial structure of SST variability[J].Climate Dyn, 44(1-2):95-114.
[19]Weare B C.2013.El Ni?o teleconnections in CMIP5 models[J].Climate Dyn, 41(7-8):2165-2177.DOI:10.1007/s00382-012-1537-3.
[20]Weare B C.2014.ENSO Modes of the Equatorial Pacific Ocean in Observations and CMIP5 Models[J].Climate Dyn, 43(5-6):1285-1301.DOI:10.1007/s00382-013-1941-3.
[21]Wu T, Li W, Ji J, et al.2013.Global carbon budgets simulated by the Beijing Climate Center Climate System Model for the last century[J].J Geophys Res Atmos, 118(10):4326-4347.DOI:10.1002/jgrd.50320.
[22]Wu T, Yu R, Zhang F, et al.2010.The Beijing climate center atmospheric general circulation model:Description and its performance for the present-day climate [J].Climate Dyn, 34(1):123-147.DOI:10.1007/s00382-008-0487-2.
[23]Wu T, Yu R, Zhang F.2008.A modified dynamic framework for the atmospheric spectral model and its application[J].J Atmos Sci, 65(7):2235-2253.DOI:10.1175/2007JAS2514.1.
[24]Xu K, Su J, Zhu C.2014.The natural oscillation of two types of enso events based on analyses of CMIP5 model control runs[J].Adv Atmos Sci, 31(4):801-813.DOI:10.1007/s00376-013-3153-5.
[25]Yu J, Kim S T.2010.Identification of central-pacific and eastern-pacific types of ENSO in CMIP3 Models[J].Geophys Res Lett, 37(15):242-247.DOI:10.1029/2010GL044082.
[26]Dong Guangtao, Chen Bomin, Chen Baode.2012.Application of regional climate model (RegCM3) on 10-year hindcast experiment and a real-time operation in summer of 2010 in the Eastern China[J].Plateau Meteor, 31(6):1601-1610.<br/>董广涛, 陈伯民, 陈葆德.2012.区域气候模式RegCM3在华东地区夏季的10年回报和2010年业务预报[J].高原气象, 31(6):1601-1610.
[27]Dong Min, Wu Tongwen, Wang Zaizhi.2009.Simulations of the tropical intraseasonal oscillations by the AGCM of the Beijing Climate Center[J].Acta Meteor Sini, 67(6):912-922.<br/>董敏, 吴统文, 王在志, 等.2009.北京气候中心大气环流模式对季节内振荡的模拟[J].气象学报, 67(6):912-922.
[28]Gao Feng, Xin Xiaoge, Wu Tongwen.2012.A study of the prediction of regional and global temperature on decadal time scale with BCC_CSM1.1 Model[J].Chinese J Atmos Sci, 36(6):1165-1179.DOI:10.3878/j.issn.1006-9895.2012.11243.<br/>高峰, 辛晓歌, 吴统文.2012.BCC_CSM1.1对10年尺度全球及区域温度的预测研究[J].大气科学, 36(6):1165-1179.
[29]Jie Weihua, Wu Tongwen.2010.Hindcast for the 1998 summer heavy precipitation in the Yangtze and Huaihe River Valley using BCC_AGCM2.0.1 Model[J].Chinese J Atmos Sci, 34(5):962-978.DOI:10.3878/j.issn.1006-9895.2010.05.11.<br/>颉卫华, 吴统文.2010.全球大气环流模式BCC_AGCM2.0.1对1998年夏季江淮流域强降水过程的回报试验研究[J].大气科学, 34(5):962-978.
[30]Shi Yanjjun, Ren Yulong, Wang Shigong, et al.2012.Verification of simulation ability of BCC_CSM climate model in regional climate change in China[J].Plateau Meteor, 31(5):1257-1267.<br/>石彦军, 任余龙, 王式功, 等.2012.BCC_CSM气候模式对中国区域气候变化模拟能力的检验[J].高原气象, 31(5):1257-1267.
[31]Wan Shiquan, He Wenping, Feng Guolin, et al.2014.Study on Numerical Model Error Correction Scheme[J].Plateau Meteor, 33(2):460-466.DOI:10.7522/j.issn.1000-0534.2013.00017.<br/>万仕全, 何文平, 封国林, 等.2014.数值模式误差订正方法初探[J].高原气象, 33(2):460-466.
[32]Wu B, Zhou T J.2012.Prediction of decadal variability of sea surface temperature by a coupled global climate model FGOALS-gl developed in LASG/IAP[J].Chinese Sci Bull, 57(13):1168-1175.DOI:10.1007/s11434-012-5134-y.<br/>吴波, 周天军.2012.IAP/LASG气候系统模式FGOALS_gl预测的海表面温度年代际尺度的演变[J].科学通报, 57(13):1168-1175.
[33]Xin Xiaoge, Wu Tongwen, Zhang Jie.2012.Introduction of CMIP5 experiments carried out by BCC climate[J].Progressus Inquisitiones DE Mutatione Climatis.8(5):378-382.DOI:10.3969/j.issn.1673-1719.2012.05.010.<br/>辛晓歌, 吴统文, 张洁.2012.BCC气候系统模式开展的CMIP5试验介绍[J].气候变化研究进展, 8(5):378-382.
[34]Xu Kang.2014.Eastern-and Central-Pacific ENSO and Their Possible Different Impacts on Precipitation in China[D].Nanjing:Nanjing University of Information Science &amp; Technology.<br/>徐康.2014.东部和中部型ENSO模态及其对中国降水影响的差异[D].南京:南京信息工程大学.
[35]张芳, 董敏, 吴统文.2014.CMIP5模式对ENSO现象的模拟能力评估[J].气象学报, 72(1):30-48.
[36]Zhang Fang, Dong Min, Wu Tongwen.2014.Evaluation of the ENSO features simulations as done by the CMIP5 Models[J].Acta Meteor Sini, 72(1):30-48.DOI:10.11676/qxxb2014.011.
[37]Zhang Li, Wu Tongwen, Xin Xiaoge, et al.2013.The annual modes of tropical precipitation simulated by the Beijing Climate Center Climate System Model (BCC_CSM)[J].Chinese J Atmos Sci, 37(5):994-1012.DOI:10.3878/j.issn.1006-9895.2012.12126.<br/>张莉, 吴统文, 辛晓歌, 等.2013.BCC-CSM模式对热带降水年循环模态的模拟[J].大气科学, 37(5):994-1012.
PDF(9788 KB)

902

Accesses

0

Citation

Detail

Sections
Recommended

/