Please wait a minute...
Adv search
Plateau Meteorology  2019, Vol. 38 Issue (5): 1004-1016    DOI: 10.7522/j.issn.1000-0534.2018.00131
Analysis of a Sustained Rainstorm Accompanied by a Plateau Vortex and a Tropical Cyclone
HE Guangbi1, XIAO Yuhua2, SHI Rui2
1. Institute of Plateau Meteorology, Chengdu, China Meteorological Administration/Rain and Drought-Flood Disasters in Plateau and Basin Key Laboratory of Sichuan Province, Chengdu 610072, Sichuan, China;
2. Sichuan Provincial Meteorological Observatory, China Meteorological Administration, Chengdu 610072, Sichuan, China
Download:  HTML  PDF (11628KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  In order to further investigate the mechanism associated with a sustained rainstorm process occurred in Sichuan, Shanxi and Gansu province in late July 2010, analysis were conducted on the circumfluence background and the directly related weather systems, e. g., the plateau vortex, the tropical cyclone, the mesoscale convective and the warm/cold advection together with their interactions. The data used in this study includes MICAPS data, FY-23 radiation brightness temperature, TRMM satellite rainfall product, and NCEP Reanalysis dataset (1°×1°, 6 hours). The results show that:(1) The sustained rainstorm process occurred under favorable conditions when the South Asia High in the upper troposphere changed from a zonal pattern to a meridional pattern, the subtropical high in the middle troposphere shifted from east to west, the landed tropical cyclone moved to the west, the plateau vortex was blocked on the east and the mesoscale convection systems kept reoccurring. (2)The interaction between the plateau vortex and the tropical cyclone decreased the velocity of both systems, enhanced the shear field in the vortex area, therefore a strengthened vortex was maintained by the positive vorticity advection transport. (3) The low vortex provided favorable uplifting conditions for rainstorms to occur and produced strong positive vorticity as well as convergence upward movement during precipitation in the vortex area. The maximum rainfall occurred concurrently with the strongest convergence ascending motion. The positive z-helicity during precipitation process in the lower troposphere helped to maintain low vortex system and sustain precipitation; the position and time of high z-helicity provide certain indicative to the occurring time and location of heavy rainfall. (4) The transport of warm advection in the lower troposphere continuously accumulated energy in the rainstorm area, incurred frequent mesoscale convection system activities and thus resulted in sustained rainfall.
Key words:  Sustained rainstorm      plateau vortex      tropical cyclone      mesoscale convective system      influencing mechanism     
Received:  29 June 2018      Published:  17 October 2019
ZTFLH:  P447  
Articles by authors
HE Guangbi
XIAO Yuhua

Cite this article: 

HE Guangbi, XIAO Yuhua, SHI Rui. Analysis of a Sustained Rainstorm Accompanied by a Plateau Vortex and a Tropical Cyclone. Plateau Meteorology, 2019, 38(5): 1004-1016.

URL:     OR

Clark J D, 1983. The GOES user's guide[Z]. NASA STI/Recon Technical Report N, 83.
Maddox R A, Doswell Ⅲ C A, 1982. An examination of jet stream configurations, 500 mb vorticity advection and low-level thermal advection patterns during extended periods of intense convection[J]. Monthly Weather Review, 110(3):184-197.
陈永仁, 师锐, 李跃清, 等, 2010. 四川盆地持续性暴雨发生的一类环流特征研究[J]. 高原山地气象研究, 30(1):29-34.
陈忠明, 何光碧, 崔春光, 2007. 对流、湿度锋与低空急流的耦合——持续性暴雨维持的一种可能机制[J]. 热带气象学报, 23(3):246-254.
樊晓春, 马鹏, 王位泰, 2008. 青藏高原东北侧一次持续性暴雨过程分析[J]. 气象科技, 30(1):69-73.
高文良, 郁淑华, 2018. 高原涡诱发西南涡伴行个例的环境场与成因分析[J]. 高原气象, 37(1):54-67. DOI:10.7522/j.issn.1000-0534.2017.00020.
郭大梅, 刘瑞芳, 侯建忠, 等, 2012. 陕西一次远距离台风持续性暴雨的成因分析[J]. 气象科学, 32(3):325-331.
何光碧, 曾波, 郁淑华, 等, 2016. 青藏高原周边地区持续性暴雨特征分析[J]. 高原气象, 35(4):865-874. DOI:10.7522/j.issn.1000-0534.2015.00081.
侯建忠, 陈小婷, 刘瑞芳, 等, 2011. 台风登陆背景下陕西两次大暴雨过程对比分析[J]. 成都信息工程学院学报, 26(5):494-500.
黄荣辉, 陈栋, 刘永, 2012. 中国长江流域洪涝灾害和持续性暴雨的发生特征及成因[J]. 成都信息工程学院学报, 27(1):1-19.
黄忠, 吴乃庚, 冯业荣, 等, 2008.2007年6月粤东持续性暴雨的成因分析[J]. 气象, 34(4):53-60.
李超, 李跃清, 蒋兴文, 2017. 夏季长生命史盆地涡活动对川渝季节降水的影响[J]. 高原气象, 36(3):685-696. DOI:10.7522/j.issn.1000-0534.2016.00064.
梁生俊, 马晓华, 2012. 西北地区东部两次典型大暴雨个例对比分析[J], 气象, 38(7):804-813.
刘新伟, 段海霞, 赵庆云, 2011.2010年7月甘肃一次区域性暴雨分析[J]. 干旱气象, 29(4):472-477.
牛乐田, 石小龙, 胡伟, 等, 2012.2010-07-23陕西中西部大暴雨天气诊断分析[J]. 陕西气象(1):1-4.
王茂书, 张勇, 2011.2010年7月1618日巴中市持续性暴雨天气诊断分析[J]. 高原山地气象研究, 31(3):43-48.
王晓芳, 黄华丽, 黄治勇, 2011.2010年56月南方持续性暴雨的成因分析[J]. 气象, 37(10):1206-1215.
王忠东, 曹楚, 2012.2005年6月1822日浙南持续性梅雨锋暴雨过程诊断分析[J]. 气象与环境科学, 35(1):32-37.
武麦凤, 曹玲玲, 马耀荣, 等, 2015. 西北涡与登陆台风相互作用个例的诊断分析[J]. 暴雨灾害, 34(4):309-315. DOI:10.3969/j.issn.1004-9045.2015.04.003.
郁淑华, 屠妮妮, 高文良, 2018. 一类青藏高原低涡异常路径的环境场分析[J]. 高原气象, 37(3):686-701. DOI:10.7522/j.issn.1000-0534.2017.00039.
张小玲, 张建忠, 2006.1981年7月914日四川持续性暴雨分析[J]. 应用气象学报, 17(增刊):79-87.
张雁, 丁一汇, 马强, 2001. 持续性梅雨锋暴雨的环流特征分析[J]. 气象与环境研究, 6(2):161-167.
周淑玲, 闫淑莲, 张灿, 2009.2007年8月1012日山东半岛持续性特大暴雨的维持机制分析[J]. 热带气象学报, 25(5):628-634. DOI:10.3969/j.issn.1004-4965.2009.05.0015.
[1] LI Yan, LIU Xin, LI Wei-Ping. Numerical Simulation of Land Surface Process at Different
Underlying Surfaces in Tibetan Plateau
[J]. PLATEAU METEOROLOGY, 2012, 31(3): 581 -591 .
[2] . Evaluation on Nonhydrostatic Three-Dimensional Variational
Data Assimilation Scheme of GRAPES-MESO Model
[J]. PLATEAU METEOROLOGY, 2013, 32(3): 689 -706 .
[3] . Error Analysis of Radar Echo Extrapolation[J]. PLATEAU METEOROLOGY, 2013, 32(3): 874 -883 .
[4] . Characteristics of Temporal-Spatial Distributions of Heavy
Rainstorm in Hunan and Its Typing
[J]. PLATEAU METEOROLOGY, 2013, 32(5): 1425 -1431 .
[5] ZHANG Man, MIN Jinzhong, QI Youcun, YANG Yi. Ensemble Experiments Research Based on Mass-Fluxed Cumulus Convective Parameterization of KF-ETA[J]. , 2014, 33(5): 1323 -1331 .
[6] YANG Lili, YANG Yi, ZHANG Tinglong, WANG Ying. Analyzing a Heavy Rainfall Process Based on Dual-Doppler Radar and Lightning Data[J]. , 2015, 34(2): 546 -555 .
[7] . Applied Analyses on Palmer, SPEI and CI Indices of Drought Process
in Yangtze-Huaihe River Basins during  Winter of 2010/Spring of 2011
[J]. PLATEAU METEOROLOGY, 2013, 32(4): 1126 -1139 .
[8] YANG Bingyun, ZHANG Hua, PENG Jie, WANG Zhili, JING Xianwen. Analysis on Global Distribution Characteristics of Cloud Microphysical and Optical Properties Based on the CloudSat Data[J]. , 2014, 33(4): 1105 -1118 .
[9] ZHANG Hong-hua, SHEN Tong-li, WANG Gui-chen, ZHU Lin . The Theory of Ensemble Kalman Filter Assimilation and Its Numerical Experiment[J]. PLATEAU METEOROLOGY, 2008, 27(3): 619 -527 .
[10] LUO Si-qiong, LÜ Shi-hua, ZHANG Yu, HU Ze-yong, MA Yao-ming, LI Suo-suo, SHANG Lun-yu . Simulation Analysis on Land Surface Process of BJ Site of Central Tibetan Plateau Using CoLM[J]. PLATEAU METEOROLOGY, 2008, 27(2): 259 -271 .