Please wait a minute...
Adv search
Plateau Meteorology  2019, Vol. 38 Issue (5): 1099-1107    DOI: 10.7522/j.issn.1000-0534.2018.00139
    
Environmental Significance of Precipitation Stable Isotopic in Dadongshu Mountain of Middle Qilian Mountains
ZHANG Baijuan1,2, LI Zongxing2, WANG Yu1, FENG Qi2, ZOU Haiming3, LI Aijun4
1. College of Energy and Power Engineering, Lanzhou University of Technology, Lanzhou 730050, Gansu, China;
2. China Key Laboratory of Eco-hydrology of In-land River Basin, Northwest Institute of Eco-environment and Resources, Chinese Academy of Sciences/Gansu Qilian Mountains Ecological Research Center, Lanzhou 730000, Gansu, China;
3. Zhimenda Hydrological Station, Qinghai Hydrology and Water Resources Survey Bureau, Yushu 815100, Qinghai, China;
4. Hydrology and Water Resources Bureau of Gansu Province, Lanzhou 730000, Gansu, China
Download:  HTML  PDF (1740KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  To investigate the environmental significance of precipitation stable isotopic in Dadongshu Mountain of middle Qilian Mountains, the characteristics of precipitation stable isotopic and the correlations between precipitation stable isotopes and local meteorological factors were analyzed in this paper based on 145 precipitation samples from Dadongshu pass site (4146.8 m) and meteorological data at the same period in 2014. The results showed that:(1) The stable isotopes of precipitation showed a significant inter-annual fluctuations and an obvious seasonal variations. The characteristics of precipitation stable isotopes appears as a high value in Summer and autumn season, and a low value in winter and spring season. (2) Temperature effect of δ18O was significant in all precipitation events. The δ18O increases by 0.62‰ for every 1℃ temperature increasing, while the precipitation effect was not noticeable. A weak precipitation effect of δ18O only appeared in summer precipitation events which can be conclude that the temperature is the mainly factor of precipitation stable isotope evolution in present study area. (3) The δ18O and d-excess in this study area were significantly positively correlated with the averaged vapor pressure. It indicated that the stable isotopes of precipitation is significant effected on the sub-cloud evaporation in this research area. The present study provided a further understand of isotopic hydrology in inland river basins at the Qilian Mountains.
Key words:  The central Qilian Mountains      precipitation      stable isotopes      environmental significance     
Received:  18 September 2018      Published:  17 October 2019
ZTFLH:  P246.6  

Cite this article: 

ZHANG Baijuan, LI Zongxing, WANG Yu, FENG Qi, ZOU Haiming, LI Aijun. Environmental Significance of Precipitation Stable Isotopic in Dadongshu Mountain of Middle Qilian Mountains. Plateau Meteorology, 2019, 38(5): 1099-1107.

URL: 

http://www.gyqx.ac.cn/EN/10.7522/j.issn.1000-0534.2018.00139     OR     http://www.gyqx.ac.cn/EN/Y2019/V38/I5/1099

Bisselink B, Dolman A J, 2009. Recycling of moisture in Europe:contribution of evaporation to variability in very wet and dry years[J]. Hydrology and Earth System Sciences, 13(9):1685-1697.
Boronina A, Balderer W, Renard P, et al, 2005. Study of stable isotopes in the Kouris catchment (Cyprus) for the description of the regional groundwater flow[J]. Journal of Hydrology, 308(1):214-226.
Dansgaard W, 1964. Stable isotopes in precipitation[J]. Tellus, 16(4):436-468.
Goni I, 2006. Tracing stable isotope values from meteoric water to groundwater in the southwestern part of the Chad basin[J]. Hydrogeology Journal, 14(5):742-752.
Li Z, Feng Q, Liu W, et al, 2014. Study on the contribution of cryosphere to runoff in the cold alpine basin:A case study of Hulugou River Basin in the Qilian Mountains[J]. Global & Planetary Change, 122:345-361.
Li Z, Gao Y, Wang Y, et al, 2015. Can monsoon moisture arrive in the Qilian Mountains in summer?[J]. Quaternary International, 358:113-125.
Pang Z H, Kong Y L, Klaus F, et al, 2011. Processes affecting isotopes in precipitation of an arid region[J]. Tellus, 63(3):352-359.
Pfahl S, Wernli H, 2008. Air parcel trajectory analysis of stable isotopes in water vapor in the eastern Mediterranean[J]. Journal of Geophysical Research Atmospheres, 113:D20104. DOI:10.1029/2008JD009839.
Rai S, Purushothaman P, Kumar B, et al, 2014. Stable isotopic composition of precipitation in the River Bhagirathi Basin and identification of source vapour[J]. Environmental Earth Sciences, 71(11):4835-4847.
Seneviratne S, Corti T, Davin E, et al, 2010. Investigating soil moisture-climate interactions in a changing climate:A review[J]. Earth Sciences Review, 99:125-161.
Trenberth K E, Dai A, Rasmussen R M, et al, 2003. The changing character of precipitation[J]. American Meteorological Society, 84:1205-1217.
Wu J K, Ding Y J, Ye B S, et al, 2010. Spatio-temporal variation of stable isotopes in precipitation in the Heihe River Basin, Northwestern China[J]. Environmental Earth Sciences, 61:1123-1134.
Zhou S, Nakawo M, Sakai A, et al, 2007. Water isotope variations in the snow pack and summer precipitation at July 1 Glacier, Qilian Mountains in northwest China[J]. Chinese Science Bulletin, 52(21):2963-2972.
陈曦, 李志, 程立平, 等, 2016. 黄土塬区大气降水的氢氧稳定同位素特征及水汽来源[J]. 生态学报, 36(1):98-106.
陈中笑, 程军, 郭品文, 等, 2010. 中国降水稳定同位素的分布特点及其影响因素[J]. 大气科学学报, 33(6):667-679.
冯芳, 冯起, 刘贤德, 等, 2017. 祁连山排露沟流域降水δ18O和δD特征及水汽来源[J]. 中国沙漠, 37(5):997-1005.
顾慰祖, 2011. 同位素水文学[M]. 北京:科学出版社.
郭小燕, 冯起, 李宗省, 等, 2015. 敦煌盆地降水稳定同位素特征及水汽来源[J]. 中国沙漠, 35(3):715-723.
李亚举, 张明军, 王圣杰, 等, 2011. 我国大气降水中稳定同位素研究进展[J]. 冰川冻土, 33(3):624-633.
李永格, 李宗省, 冯起, 等, 2018. 讨赖河流域不同海拔降水稳定同位素的环境意义[J]. 环境科学, 39(6):2661-2672.
梁慧, 黄晓东, 王云龙, 等, 2017. 祁连冰沟流域浅雪层光谱特征分析与遥感算法反演[J]. 草业科学, 34(7):1353-1364.
刘光生, 王根绪, 孙向阳, 等, 2012. 多年冻土区风火山流域降水河水稳定同位素特征分析[J]. 水科学进展, 23(5):621-627.
刘洁遥, 张福平, 冯起, 等, 2018. 西北地区降水稳定同位素的云下二次蒸发效应[J]. 应用生态学报, 29(5):1479-1488.
刘进达, 赵迎昌, 刘恩凯, 1997. 中国大气降水稳定同位素时-空分布规律探讨[J]. 勘察科学技术(3):34-39.
刘维成, 张强, 傅朝, 2017. 近55年来中国西北地区降水变化特征及影响因素分析[J]. 高原气象, 36(6):1533-1545. DOI:10.7522/j.issn.1000-0534.2017.00081.
刘雪梅, 张明军, 王圣杰, 等, 2016.2008-2014年祁连山区夏季降水的日变化特征及其影响因素[J]. 地理学报, 71(5):754-767.
柳鉴容, 宋献方, 袁国富, 等, 2008. 西北地区大气降水δ18O的特征及水汽来源[J]. 地理学报, 63(1):12-22.
孟玉川, 刘国东, 2010. 长江流域降水稳定同位素的云下二次蒸发效应[J]. 水科学进展, 21(3):327-334.
宋献方, 柳鉴容, 孙晓敏, 等, 2007. 基于CERN的中国大气降水同位素观测网络[J]. 地球科学进展, 22(7):738-747.
田立德, 马凌龙, 余武生, 等, 2008. 青藏高原东部玉树降水中稳定同位素季节变化与水汽输送[J]. 中国科学(地球科学), 38(8):986-992.
王宁练, 张世彪, 贺建桥, 等, 2009. 祁连山中段黑河上游山区地表径流水资源主要形成区域的同位素示踪研究[J]. 科学通报, 54:2148-2152.
王宁练, 张世彪, 蒲健辰, 等, 2008. 黑河上游河水中δ18O季节变化特征及其影响因素研究[J]. 冰川冻土, 30(6):914-919.
王希强, 陈仁升, 刘俊峰, 2017. 气候变化背景下祁连山区负积温时空变化特征分析[J]. 高原气象, 36(5):1267-1275. DOI:10.7522/j.issn.1000-0534.2016.00096.
吴锦奎, 杨淇越. 丁永建, 等, 2011. 黑河流域大气降水稳定同位素变化及模拟[J]. 环境科学, 32(7):1857-1866.
杨俊华, 2013. 中国大气降水δ18O的时空分布及其影响因素[D]. 兰州:中国科学院寒区旱区环境与工程研究所, 1-74.
杨针娘, 杨志怀, 1993. 祁连山冰沟流域冻土水文过程[J]. 冰川冻土, 15(2):235-241.
姚檀栋, 孙维贞, 蒲键辰, 等, 2000. 内陆河流域系统降水中的稳定同位素——乌鲁木齐河流域降水中δ18O与温度关系研究[J]. 冰川冻土, 22(1):15-22.
张耀宗, 张勃, 刘艳艳, 等, 2009. 近半个世纪以来祁连山区气温与降水变化的时空特征分析[J]. 干旱区资源与环境, 23(4):127-132.
张应华, 仵彦卿, 2007a. 黑河流域中上游地区降水δ18O变化特征[J]. 冰川冻土, 29(3):440-445.
张应华, 仵彦卿, 2007b. 黑河流域中上游地区降水中氢氧同位素与温度关系研究[J]. 干旱区地理, 30(1):16-21.
张应华, 仵彦卿, 温小虎, 等, 2006. 环境同位素在水循环研究中的应用[J]. 水科学进展, 17(5):738-747.
张自超, 丁悌平, 2000. 关于同位素地质测试数据的数据处理及结果表示[J]. 岩矿测试, 19(1):77-79.
章新平, 姚檀栋, 1996. 青藏高原东北地区现代降水中δD与δ18O的关系研究[J]. 冰川冻土, 18(4):360-365.
赵良菊, 尹力, 肖洪浪, 等, 2011. 黑河源区水汽来源及地表径流组成的稳定同位素证据[J]. 科学通报, 56(1):58-67.
郑勤, 陈仁升, 韩春坛, 等, 2018. 祁连山TRwS204与中国标准雨量筒降水观测对比研究[J]. 高原气象, 37(3):747-756. DOI:10.7522/j.issn.1000-0534.2018.00039.
[1] . Retrieval of Aerosol Optical Depth with a Custom Aerosol Model
over Lanzhou and Its Surroundings
[J]. PLATEAU METEOROLOGY, 2013, 32(2): 402 .
[2] . Analysis on Micrometeorology Characteristics in  Surface
Layer over Badan Jaran Desert in Summer
[J]. PLATEAU METEOROLOGY, 2013, 32(6): 1682 -1691 .
[3] LIU Honglan, ZHANG Junguo, QUE Longkai, ZHENG Xuejin, BAO Jiazhi. Forecasting Model for Ice Thickness in Zhangye National Wetland Park Watershed Based on BP Neural Network[J]. PLATEAU METEOROLOGY, 2014, 33(3): 832 -837 .
[4] YAO Junqiang, YANG Qing, MAO Weiyi, HAN Xueyun. Analysis of a Summer Rainstorm Water Vapor Paths in Tianshan Mountains (Xinjiang) Based on HYSPLIT4 Model[J]. PLATEAU METEOROLOGY, 2018, 37(1): 68 -77 .