Please wait a minute...
Adv search
Plateau Meteorology  2019, Vol. 38 Issue (5): 1091-1098    DOI: 10.7522/j.issn.1000-0534.2018.00141
    
Cause of the Galloping in Anhui Province along the Yangtze River in Early 2018
WANG Chuanhui1, YAO Yeqing1, XIA Lingzhi2, YAO Zhenhai1, DING Guoxiang1, LUO Yan1
1. Anhui public meteorological service center, Hefei 230031, Anhui, China;
2. State Grid Anhui Electric Power Research Institute, Hefei 230022, Anhui, China
Download:  HTML  PDF (5940KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Meteorological elements in the ice coating galloping of power line process in the region along the Yangtze River of southern Anhui in the early 2018 were analysed, as well as the weather situation lead to ice coating and gale, based on the observation data of 5min ground routine meteorological elements, the daily ice coating data of meteorological ice observation stations, the sounding data from Anqing station by 12 h and the ERA-Interim reanalysis data by 6 h. Results show that:There are varying degrees of wire icing near the dancing position, with strong northeastern wind. The angle between the wind direction and dancing wire is generally above 45 degrees, with stronger turbulence. Freezing rain and strong winds are the direct factors leading to the wire dancing. Accompanied by the wire dancing freezing rain is a typical "over cooling warm rain"; The southwest air flow in front of 700 hPa south branch trough, which maintains the existence of the warm layer, brings ample water vapor, as well as warm temperature advection for the freezing rain weather condition; the cold temperature advection by the northeast air flow under the continental cold high pressure of the 925 hPa makes the surface precipitation in the over cooling state. Strong northeastern wind were observed near dancing wire. Strengthen of cold high pressure caused by the accumulation of cold air after the front over northern China is one of the main factors that lead to the strong northeastern wind in the region along the Yangtze River of Anhui.
Key words:  Area along Yangtze River      icing      galloping      power lines      synoptic causes     
Received:  10 August 2018      Published:  17 October 2019
ZTFLH:  P458.3  

Cite this article: 

WANG Chuanhui, YAO Yeqing, XIA Lingzhi, YAO Zhenhai, DING Guoxiang, LUO Yan. Cause of the Galloping in Anhui Province along the Yangtze River in Early 2018. Plateau Meteorology, 2019, 38(5): 1091-1098.

URL: 

http://www.gyqx.ac.cn/EN/10.7522/j.issn.1000-0534.2018.00141     OR     http://www.gyqx.ac.cn/EN/Y2019/V38/I5/1091

Dee D P, Uppala S M, Simmons A J, et al, 2011. The ERA-Interim reanalysis:configuration and performance of the data assimilation system[J]. Quarterly Journal of the Royal Meteorlolgical Society, 137(656):553-597.
Gupta S, Wipf T, 1994. Structural failure analy sis of 345 kV transmission line[J]. IEEE Transaction on Power Delivery, 9(2):894-903.
Huffman G J, Norman G A, 1988. The supercooled warm rain process and the specification of freezing precipitation[J]. Monthly Weather Review, 2172-2182.
Novak M, 1973. The effect of turbulence on galloping instability[J]. Boundary Layer Wind Tunnel Laboratory Report-2-73, 100(1):27-47.
Rauber R M, Olthoff L S, Ramamurthy M K, 2000. The relative importance of warm rain and melting processes in freezing precipitation events[J]. Journal of Applied Meteorology, 39:1185-1195.
Waugh S, Schuur T J, 2018. On the use of radiosondes in freezing precipitation[J]. Journal of Atmospheric and Oceanic Technology, 35:459-472. DOI:10.1175/JTECH-D-17-0074.1.
敖雪, 翟晴飞, 崔妍, 等, 2018. 三种风场再分析资料在辽宁省海岸带的比较与评估[J]. 高原气象, 37(1):275-285. DOI:10.7522/j.issn.1000-0534.2017.00029.
曹杨, 陈洪滨, 李军, 等, 2017. 利用再分析与探空资料对0℃层高度和地面气温变化特征及其相关性的分析[J]. 高原气象, 36(6):1608-1618. DOI:10.7522/j.issn.1000-0534.2017.00011.
程译萱, 范广洲, 张永莉, 等. 2018. 青藏高原及周边地区垂直温度梯度特征及其成因分析[J]. 高原气象, 37(2):333-348. DOI:10.7522/j.issn.1000-0534.2017.00057.
丁一汇. 1989. 天气动力学中的诊断分析方法[M]. 北京:科学出版社, 44-45.
段旭, 段玮, 邢冬, 等, 2018. 冬春季昆明准静止锋与云贵高原地形的关系[J]. 高原气象, 37(1):137-147. DOI:10.7522/j.issn.1000-0534.2017.00032.
傅观君, 王黎明, 关志成, 等, 2013. 架空输电线路分裂导线扭转刚度及舞动机理分析[J]. 高电压技术, 39(5):1273-1280.
高正旭, 周月华, 肖莺, 等, 2016. 湖北省输电线路覆冰导线舞动灾害的一种气象甄别方法[J]. 灾害学, 31(3):73-77.
顾光芹, 周须文, 史印山, 2012. 河北省输电线路舞动特点及气象因素分析[J]. 热带气象学报, 28(6):953-960.
郭应龙, 李国兴, 尤传永, 2003. 输电线路舞动[M]. 北京:中国电力出版社, 1-3.
洪新民, 郭文华, 熊安平, 2017. 山区峡谷风场分布特性及地形影响的数值模拟[J]. 长安大学学报(自然科学版), 37(5):56-65.
黄俊杰, 周悦, 阮羚, 2015. 湖北省地形因子对电线覆冰的影响研究[J]. 暴雨灾害, 34(3):254-259.
盛春岩, 李建华, 范苏丹, 2014. 地形及下垫面对渤海大风影响的数值研究[J]. 气象, 40(11):1338-1344.
陶保震, 黄新波, 李俊峰, 等, 2010.1000 kV交流特高压输电线路舞动区的划分[J]. 高压电器, 46(9):3-7.
王丙兰, 宋丽莉, 袁春红, 等, 2017. 河南电网输电线路舞动的气象要素指标研究[J]. 气象, 43(1):108-114.
王传辉, 周建平, 周顺武, 等, 2015. 近32 a安徽省风速、风向分布特征[J]. 干旱气象, 33(2):236-243.
王少华, 蒋兴良, 孙才新, 2005. 输电线路导线舞动的国内外研究现状[J]. 高电压技术, 31(10):11-14.
王守礼, 1994. 影响电线覆冰因素的研究与分析[J]. 电网技术, 18(4):18-24.
谢运华, 1997. 电线覆冰高度修正研究的进展[J]. 电力建设, 6:47-50.
徐中年, 1995. 大气湍流对输电线舞动的影响[J]. 中国电力, 11:50-53.
杨朝虹, 张镭, 苑广辉, 等, 2018. 东亚和北美地区温度和降水变化特征[J]. 高原气象, 37(3):662-674. DOI:10.7522/j.issn.1000-0534.2017.00083.
余予, 任芝花, 孟晓艳, 2018. 中国结冰现象序列的建立及气候变化分析[J]. 高原气象, 37(2):553-559. DOI:10.7522/j.issn.1000-0534.2017.00071.
张俊兰, 彭军, 2017. 北疆春季降水相态转换判识和成因分析[J]. 高原气象, 36(4):939-949. DOI:10.7522/j.issn.1000-0534.2016.00094.
[1] XIAO Yanjiao, WAN Yufa, WANG Zhibin. Quality Control of Dual PRF Velocity Data for Doppler Weather Radars[J]. PLATEAU METEOROLOGY, 2016, 35(4): 1112 -1122 .
[2] Hu Fuquan, Guo Min, Zhou Junqun. THE REAL TIME SHORT-RANGE PREDICTION OF SEVERE CONVECTIVE WEATHER AND θse CHARACTERISTICS METHOD[J]. PLATEAU METEOROLOGY, 1997, 16(4): 440 -445 .