Please wait a minute...
Adv search
Plateau Meteorology  2019, Vol. 38 Issue (5): 1120-1128    DOI: 10.7522/j.issn.1000-0534.2019.00018
    
The Impact of Multi-Scale Meteorological Conditions on PM2.5 Pollution over Ji'nan
YIN Chengmei1, HE Jianjun2, YU Lijuan3, JIAO Yang1, ZHOU Lechen1
1. Ji'nan Meteorological Bureau of Shandong Province, Ji'nan 250102, Shandong, China;
2. State Key Laboratory of Severe Weather & Key Laboratory of Atmospheric Chemistry of China Meteorological Administration, Chinese Academy of Meteorological Sciences, Beijing 100081, China;
3. Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
Download:  HTML  PDF (8180KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Based on long-term air quality and meteorological data, the analysis of the relationship between air pollution and meteorological conditions over Ji'nan is relatively rare. Using air quality monitoring data, meteorological reanalysis data, and meteorological observation data in Ji'nan City from 2010 to 2016, this paper analyzes PM2.5 pollution characteristics, the relation between PM2.5 concentration and 2-m temperature (T), 2-m relative humidity (RH), 10-m U and V component of wind speed (U and V), 10-m wind speed (WS), K index (K), A index (A) and boundary layer height (BLH), and circulation types. Based on the stepwise regression model, the influence of meteorological conditions on the day-to-day variation of PM2.5 concentration was quantified by explained variance. The results recover that there are a significant seasonal and interannual variations in PM2.5 concentration in Ji'nan. The annual average PM2.5 concentration decreases significantly during 2010 to 2016. PM2.5 concentration is positive correlated with T, RH, K and A significantly, while negative correlated with WS and BLH (p<0.05). The correlations between PM2.5 concentration and U and V component do not pass t-test at 95% confidence interval. The mean PM2.5 concentrations for different circulation types have significant difference. Based on regression model analysis, it is found that meteorological conditions can explain the day-to-day variation of PM2.5 concentration from 10% to 40% in Ji'nan. Obvious seasonal difference of impact of meteorological conditions is detected.
Key words:  Ji'nan      PM2.5      correlation analysis      regression analysis      meteorological conditions     
Received:  16 October 2018      Published:  17 October 2019
ZTFLH:  P401  

Cite this article: 

YIN Chengmei, HE Jianjun, YU Lijuan, JIAO Yang, ZHOU Lechen. The Impact of Multi-Scale Meteorological Conditions on PM2.5 Pollution over Ji'nan. Plateau Meteorology, 2019, 38(5): 1120-1128.

URL: 

http://www.gyqx.ac.cn/EN/10.7522/j.issn.1000-0534.2019.00018     OR     http://www.gyqx.ac.cn/EN/Y2019/V38/I5/1120

He J J, Gong S L, Yu Y, et al, 2017. Air pollution characteristics and their relation to meteorological conditions during 2014-2015 in major Chinese cities[J]. Environmental Pollution, 223:484-496.
He J J, Gong S L, Zhou C H, et al, 2018. Analyses of winter circulation types and their impacts on haze pollution in Beijing[J]. Atmospheric Environment, 192:94-103.
Liu T T, Gong S L, He J J, et al, 2017. Attributions of meteorological and emission factors to the 2015 winter severe haze pollution episodes in China's Jing-Jin-Ji area[J]. Atmospheric Chemistry and Physics, 17:2971-2980.
Turpin B J, Huntzicker J J, 1995. Identification of secondary organic aerosol episodes and quantitation of primary and secondary organic aerosol concentrations during SCAQS[J]. Atmospheric Environment, 29(23):3527-3544.
Zhang Y L, Cao F, 2015. Fine particulate matter (PM2.5) in China at a city level[J]. Scientific Reports, 5:14884.
陈挚秋, 王建力, 杨平恒, 2016.2014年重庆市大气污染物浓度变化特征及其与气象条件的关系[J]. 西南大学学报(自然科学版), 38(10):147-153.
丁一汇, 柳艳菊, 2014. 近50年我国雾和霾的长期变化特征及其与大气湿度的关系[J]. 中国科学(地球科学), 44(1):37-48.
杜世勇, 谭晓哲, 田勇, 等, 2002. 济南市空气质量数值预报研究[J]. 环境科学研究, 15(4):20-23.
顾沈旦, 于丽娟, 尹承美, 等, 2016. WRF模式对济南地区夏季近地面气象场模拟效果评估[J]. 气象与环境学报, 32(1):1-8.
郝巨飞, 袁雷武, 李芷霞, 等, 2018. 激光雷达和微波辐射计对邢台市一次沙尘天气的探测分析[J]. 高原气象, 37(4):1110-1119. DOI:10.7522/j.issn.1000-0534.2018.00009.
何建军, 余晔, 刘娜, 等, 2013. 基于WRF模式的兰州秋冬季大气污染预报模型研究[J]. 气象, 39(10):1293-1303.
何建军, 余晔, 刘娜, 等, 2016a. 气象条件和污染物排放对兰州市冬季空气质量的影响[J]. 高原气象, 35(6):1577-1583. DOI:10.7522/j.issn.1000-0534.2015.00087.
何建军, 吴琳, 毛洪钧, 等, 2016b. 气象条件对河北廊坊城市空气质量的影响[J]. 环境科学研究, 29(6):791-799.
环境保护部, 2012. 环境空气质量指数(AQI)技术规定(试行)(HJ633-2012)[Z/OL].[2018-10-01]. http://www.gov.cn/zwgk/2012-03/02/content_2081374.htm.
环境保护部, 国家质量监督检验检疫总局, 2012. 环境空气质量标准(GB3095-2012)[S/OL].[2018-10-01]. http://img.jingbian.gov.cn/upload/CMSjingbian/201806/201806210853050.pdf.
胡晓, 徐璐, 俞科爱, 等, 2017. 宁波地区一次重污染天气过程的成因分析[J]. 高原气象, 36(5):1412-1421. DOI:10.7522/j.issn.1000-0534.2016.00098.
李彩霞, 朱国强, 李浩, 等, 2015. 长沙市PM10、PM2.5污染特征及其与气象条件的关系[J]. 安徽农业科学, 43(12):173-176.
李志成, 郑君瑜, 钟流举, 2011. 珠江三角洲地区2006年颗粒物污染过程识别与分析[J]. 环境科学研究, 24(9):975-981.
李颖敏, 范绍佳, 张人文, 2011.2008年秋季珠江三角洲污染气象分析[J]. 中国环境科学, 31(10):1585-1591.
刘厚凤, 杨欣, 陈义珍, 等, 2015. 中国重霾过程污染气象研究进展[J]. 生态环境学报, 24(11):1971-1922.
邱粲, 曹洁, 王静, 等, 2014. 济南市空气质量状况与气象条件关系分析[J]. 中国环境监测, 30(1):53-59.
苏兆达, 白龙, 梁岱云, 2017. 近15年南宁市霾日数变化特征及气象成因分析[J]. 高原气象, 36(3):826-834. DOI:10.7522/j.issn.1000-0534.2016.00065.
谭敏, 谢晨波, 王邦新, 等, 2018. 北京2014年冬季边界层高度与颗粒物浓度的相关性研究[J]. 红外与激光工程, 47(7):187-194.
王静, 邱粲, 刘焕彬, 等, 2013. 山东重点城市空气质量及其与气象要素的关系[J]. 生态环境学报, 22(4):644-649.
徐红霞, 刘汝海, 王艳, 等, 2017.2014-2016年山东省空气质量变化及典型城市污染天气污染物来源分析[J]. 中国人口·资源与环境, 27(11):132-135.
尹承美, 于丽娟, 张永婧, 等, 2017a. 济南市雾霾特征分析[J]. 中国人口·资源与环境, 24(11):68-70.
尹承美, 褚颖佳, 蔡哲, 2017b. 济南市PM2.5时空分布特征[J]. 中国人口·资源与环境, 27(11):160-162.
于丽娟, 尹承美, 何建军, 等, 2017. 济南雾和霾特征及其影响因素分析[J]. 干旱气象, 35(4):581-589.
张朝能, 王梦华, 胡振丹, 等, 2016. 昆明市PM2.5浓度时空变化特征及其与气象条件的关系[J]. 云南大学学报(自然科学版), 38(1):90-98.
张人禾, 李强, 张若楠, 2014.2013年1月中国东部持续性强雾霾天气产生的气象条件分析[J]. 中国科学(地球科学), 44(1):27-36.
张莹, 贾旭伟, 杨旭, 等, 2017. 中国典型代表城市空气污染特征及其与气象参数的关系[J]. 气象与环境学报, 33(2):70-79.
赵晨曦, 王云琦, 王玉杰, 等, 2014. 北京地区冬春PM2.5和PM10污染水平时空分布及其与气象条件的关系[J]. 环境科学, 35(2):418-427.
中华人民共和国国务院, 2013a. 大气污染防治十条措施[Z/OL].[2018-10-01]. https://baike.baidu.com/item/大气污染防治十条措施/12505569?fr=aladdin.
中华人民共和国国务院, 2013b. 大气污染防治行动计划[Z/OL].[2018-10-01]. http://www.jingbian.gov.cn/gk/zfwj/gwywj/41211.htm?from=timeline&tdsourcetag=s_pctim_aiomsg.
中华人民共和国全国人民代表大会常务委员会, 2015. 中华人民共和国大气污染防治法(2015修订)[Z/OL].[2018-10-01]. http://www.npc.gov.cn/wxzl/gongbao/2015-11/10/content_1951879.htm.
[1] . Preliminary Application of Phased Array Technology in Weather Radar[J]. PLATEAU METEOROLOGY, 2011, 30(4): 1102 -1107 .
[2] . [J]. PLATEAU METEOROLOGY, 2010, 29(2): 498 -505 .
[3] . [J]. PLATEAU METEOROLOGY, 2010, 29(1): 23 -32 .
[4] . [J]. PLATEAU METEOROLOGY, 2009, 28(6): 1485 -1489 .
[5] . Relationship and Difference between Droughtand High Temperature Heat Waves[J]. PLATEAU METEOROLOGY, 2009, 28(3): 702 -709 .
[6] OU Jian-jun;;ZHOU Yu-quan;YANG Qi;PAN Liu-jie. Analyses on Spatial-Temporal Distributions and Temperature-MoistureStructure of Freezing Rain in China[J]. PLATEAU METEOROLOGY, 2011, 30(3): 692 -699 .
[7] CHENG Xing-Hong, TAO Shu-Wang, WEI Lei, DUAN Wei, CHEN Jun-Ming, JIANG Ying. Short-Term Wind Power Forecasting Experiment Based on WRF
Model and Adapting Partial Least Square Regression Method
[J]. PLATEAU METEOROLOGY, 2012, 31(5): 1461 .
[8] LI Jiang-lin,LI Zhao-rong,YANG Jian-cai,SHI Yan-zhao,FU Jing. Analyses on Spatial Distribution and Temporal Variation of Atmosphere
Water Vapor over Northwest China in Summer of Later 10 Years
[J]. PLATEAU METEOROLOGY, 2012, 31(6): 1574 -1581 .
[9] YAO Ye-qing1-3,HAO Ying3,ZHANG Yi-jun4,LI Jin3,LIU Gao-ping3,QIU Xue-xin3,YU Jin-long3,LIU Yuan-yong3. Synoptic Situation and Pre-Warning of Anhui Tornado[J]. PLATEAU METEOROLOGY, 2012, 31(6): 1721 -1730 .
[10] . Analyses on Lightning Feature and Formation Condition
for a Thunderstorm Process in Yunnan
[J]. PLATEAU METEOROLOGY, 2013, 32(1): 268 -277 .