Effects of Different Initial Values on the Simulation of Permafrost Hydrothermal Processes at Xidatan Station on the Three-River Regions

Zihang CHEN, Siqiong LUO, Jingyuan WANG, Xiaoqing TAN, Qingxue DONG, Wei JIN

PDF(5675 KB)
Plateau Meteorology ›› 2022, Vol. 41 ›› Issue (2) : 282-294. DOI: 10.7522/j.issn.1000-0534.2022.00003

Effects of Different Initial Values on the Simulation of Permafrost Hydrothermal Processes at Xidatan Station on the Three-River Regions

Author information +
History +

Abstract

Cite this article

Download Citations
Zihang CHEN , Siqiong LUO , Jingyuan WANG , Xiaoqing TAN , Qingxue DONG , Wei JIN. Effects of Different Initial Values on the Simulation of Permafrost Hydrothermal Processes at Xidatan Station on the Three-River Regions. Plateau Meteorology. 2022, 41(2): 282-294 https://doi.org/10.7522/j.issn.1000-0534.2022.00003

References

null
Cao B Zhang T J Wu Q B al et2019.Brief communication: Evaluation and inter-comparisons of Qinghai-Tibet Plateau permafrost maps based on a new inventory of field evidence[J].Cryosphere13(2): 511-519.DOI: 10.5194/tc-13-511-2019 .
null
Deng M S Meng X H Lyv Y Q al et2020.Comparison of soil water and heat transfer modeling over the Tibetan Plateau using two Community Land Surface Model (CLM) versions[J].Journal of Advances in Modeling Earth Systems12(10): 1-20.DOI: 10.1029/2020MS002189 .
null
Dobinski W2011.Permafrost[J].Earth-Science Reviews108(3): 158-169.DOI: 10.1016/j.earscirev.2011.06.007 .
null
Farouki O T1981.The thermal properties of soils in cold regions[J].Cold Regions Science and Technology5(1): 67-75.
null
Gao Y H Li K Chen F al et2015.Assessing and improving Noah-MP land model simulations for the central Tibetan Plateau[J].Journal of Geophysical Research-Atmospheres120(18): 9258-9278.DOI: 10.1002/2015JD023404 .
null
Gao Y H Xiao L H Chen D L al et2017.Quantification of the relative role of land-surface processes and large-scale forcing in dynamic downscaling over the Tibetan Plateau[J].Climate Dynamics48(5/6): 1705-1721.DOI: 10.1007/s00382-016-3168-6 .
null
Guo D L Sun J Q2015.Permafrost thaw and associated settlement hazard onset timing over the Qinghai-Tibet engineering corridor[J].International Journal of Disaster Risk Science6(4): 347-358.DOI: 10.1007/s13753-015-0072-3 .
null
Guo D L Wang H J2014.Simulated change in the near-surface soil freeze/thaw cycle on the Tibetan Plateau from 1981 to 2010[J].Chinese Science Bulletin59(20): 2439-2448.DOI: 10.1007/s11434-014-0347-x .
null
Guo D Wang H Wang A2017.Sensitivity of historical simulation of the permafrost to different atmospheric forcing data sets from 1979 to 2009[J].Journal of Geophysical Research: Atmospheres122(22): 12269-12284.DOI: 10.1002/2017jd027477 .
null
Guo D Wang H2013.Simulation of permafrost and seasonally frozen ground conditions on the Tibetan Plateau, 1981-2010[J].Journal of Geophysical Research: Atmospheres, 118(11): 5216-5230.DOI: 10.1002/jgrd.50457 .
null
Kang S C Xu Y W You Q L al et2010.Review of climate and cryospheric change in the Tibetan Plateau[J].Environmental Research Letters5(1): 1-8.DOI: 10.1088/1748-9326/5/1/015101 .
null
Laio F D'Odorico P Ridolfi L2006.An analytical model to relate the vertical root distribution to climate and soil properties[J].Geophysical Research Letters33(18): 1-5.DOI: 10.1029/2006GL027331 .
null
Li X F Wu T H Wu X D al et2021.Assessing the simulated soil hydrothermal regime of the active layer from the Noah-MP land surface model (v1.1) in the permafrost regions of the Qinghai-Tibet Plateau[J].Geoscientific Model Development14(3): 1753-1771.DOI: 10.5194/gmd-14-1753-2021 .
null
Li X F Wu T H Zhu X F al et2020.Improving the Noah-MP Model for simulating hydrothermal regime of the active layer in the permafrost regions of the Qinghai-Tibet Plateau[J].Journal of Geophysical Research-Atmospheres125(16): 1-20.DOI: 10. 1029/2020JD032588 .
null
Liu G Y Xie C W Zhao L al et2021.Permafrost warming near the northern limit of permafrost on the Qinghai-Tibetan Plateau during the period from 2005 to 2017: A case study in the Xidatan area[J].Permafrost and Periglacial Processes32(3): 323-334.DOI: 10.1002/ppp.2089 .
null
Luo J Niu F J Lin Z J al et2018.Variations in the northern permafrost boundary over the last four decades in the Xidatan region, Qinghai-Tibet Plateau[J].Journal of Mountain Science15(4): 765-778.DOI: 10.1007/s11629-017-4731-2 .
null
Luo S Q Fang X W Lyu S H al et2017.Improving CLM4.5 simulations of land-atmosphere exchange during freeze-thaw processes on the Tibetan Plateau[J].Journal of Meteorological Research31(5): 916-930.DOI: 10.1007/s13351-017-6063-0 .
null
Luo S Q Lu S H Zhang Y2009.Development and validation of the frozen soil parameterization scheme in Common Land Model[J].Cold Regions Science and Technology55(1): 130-140.DOI: 10.1016/j.coldregions.2008.07.009 .
null
Qin D H Zhou B T Xiao C D2014.Progress in studies of cryospheric changes and their impacts on climate of china[J].Journal of Meteorological Research28(5): 732-746.DOI: 10.1007/s13351-014-4029-z .
null
Ran Y H Li X Cheng G D2018.Climate warming over the past half century has led to thermal degradation of permafrost on the Qinghai-Tibet Plateau[J].Cryosphere12(2): 595-608.DOI: 10.5194/tc-12-595-2018 .
null
Schuur E A G McGuire A D Schadel C al et2015.Climate change and the permafrost carbon feedback[J].Nature520(7546): 171-179.DOI: 10.1038/nature14338 .
null
Song Y M Wang Z F Qi L L al et2019.Soil moisture memory and its effect on the surface water and heat fluxes on seasonal and interannual time scales[J].Journal of Geophysical Research: Atmospheres124(20): 10730-10741.DOI: 10.1029/2019JD030893 .
null
Swenson S C Lawrence D M Lee H2012.Improved simulation of the terrestrial hydrological cycle in permafrost regions by the Community Land Model[J].Journal of Advances in Modeling Earth Systems, 4.DOI: 10.1029/2012MS000165 .
null
Swenson S C Lawrence D M2012.A new fractional snow-covered area parameterization for the Community Land Model and its effect on the surface energy balance[J].Journal of Geophysical Research: Atmospheres, 117: 1-20.DOI: 10.1029/2012JD018178 .
null
Wu Q B Zhang T J Liu Y Z2010.Permafrost temperatures and thickness on the Qinghai-Tibet Plateau[J].Global and Planetary Change72(1/2): 32-38.DOI: 10.1016/j.gloplacha. 2010.03.001 .
null
Wu Q B Zhang T J2010.Changes in active layer thickness over the Qinghai-Tibetan Plateau from 1995 to 2007[J].Journal of Geophysical Research: Atmospheres, 115: 1-12.DOI: 10.1029/2009JD012974 .
null
Yang K Wang C H Li S Y2018.Improved simulation of frozen-thawing process in Land Surface Model (CLM4.5)[J].Journal of Geophysical Research: Atmospheres123(23): 13238-13258.DOI: 10.1029/2017JD028260 .
null
Yang K Wu H Qin J al et2014.Recent climate changes over the Tibetan Plateau and their impacts on energy and water cycle: A review[J].Global and Planetary Change, 112: 79-91.DOI: 10. 1016/j.gloplacha.2013.12.001 .
null
Yang S H Li R Wu T H al et2021.Evaluation of soil thermal conductivity schemes incorporated into CLM5.0 in permafrost regions on the Tibetan Plateau[J].Geoderma, 401: 1-16.DOI: 10.1016/j.geoderma.2021.115330
null
Yin G Luo J Niu F al et2021.Thermal regime and variations in the island permafrost near the northern permafrost boundary in Xidatan, Qinghai-Tibet Plateau[J].Frontiers in Earth Science, 9: 1-12.DOI: 10.3389/feart.2021.708630 .
null
Zou D F Zhao L Sheng Y al et2017.A new map of permafrost distribution on the Tibetan Plateau[J].Cryosphere11(6): 2527-2542.DOI: 10.5194/tc-11-2527-2017 .
null
陈渤黎, 罗斯琼, 吕世华, 等, 2014.黄河源区若尔盖站冻融期土壤温、 湿度的模拟与改进[J].高原气象33(2): 337-345.DOI: 10.7522/j.issn.1000-0534.2013.00085 .
null
陈渤黎, 罗斯琼, 吕世华, 等, 2017.基于CLM模式的青藏高原土壤冻融过程陆面特征研究[J].冰川冻土39(4): 760-770.DOI: 10.7522/j.issn.1000-0240.2017.0086 .
null
陈渤黎, 吕世华, 罗斯琼, 2012.CLM 3.5模式对青藏高原玛曲站陆面过程的数值模拟研究[J].高原气象31(6): 1511-1522.
null
陈瑞, 杨梅学, 万国宁, 等, 2020.基于水热变化的青藏高原土壤冻融过程研究进展[J].地理科学进展39(11): 1944-1958.DOI: 10.18306/dlkxjz.2020.11.014 .
null
吴通华, 2020.2014-2016年青藏高原西大滩多年冻土活动层数据[DS].国家冰川冻土沙漠科学数据中心
null
李磊, 沈润平, 黄安奇, 等, 2021.土壤质地改变对CLDAS/Noah-MP土壤湿度模拟的影响研究[J].高原气象40(3): 621-631.DOI: 10.7522/j.issn.1000-0534.2020.00082 .
null
李时越, 杨凯, 王澄海, 2018.陆面模式CLM 4.5在青藏高原土壤冻融期的偏差特征及其原因[J].冰川冻土40(2): 322-334.DOI: 10.7522/j.issn.1000-0240.2018.0037 .
null
李文耀, 魏楠, 黄丽娜, 等, 2020.土壤数据集对全球陆面过程模拟的影响[J].气候与环境研究25(5): 555-574.DOI: 10.3878/j.issn.1006-9585.2020.20025 .
null
罗斯琼, 吕世华, 张宇, 等, 2008.CoLM模式对青藏高原中部BJ站陆面过程的数值模拟[J].高原气象27(2): 259-271.
null
罗斯琼, 吕世华, 张宇, 等, 2009.青藏高原中部土壤热传导率参数化方案的确立及在数值模式中的应用[J].地球物理学报52(4): 919-928.DOI: 10.3969/j.issn.0001-5733.2009.04.008 .
null
马耀明, 胡泽勇, 王宾宾, 等, 2021.青藏高原多圈层地气相互作用过程研究进展和回顾[J].高原气象40(6): 1241-1262.DOI: 10.7522/j.issn.1000-0534.2021.zk006 .
null
苏有琦, 张宇, 宋敏红, 等, 2020.基于实测土壤属性CLM 4.5对青藏高原高寒草甸模拟性能的评估[J].高原气象39(6): 1295-1308.DOI: 10.7522/j.issn.1000-0534.2019.000136 .
null
吴晓东, 吴通华, 2020.多年冻土退化对气候和人类产生重要影响[J].自然杂志42(5): 425-431.DOI: 10.3969/j.issn.0253-9608.2020.05.011 .
null
肖瑶, 2020.2014-2016年青藏高原西大滩冻土气象数据集[DS].国家冰川冻土沙漠科学数据中心
null
徐洪亮, 常娟, 郭林茂, 等, 2021.青藏高原腹地多年冻土区活动层水热过程对气候变化的响应[J].高原气象40(2): 229-243.DOI: 10.7522/j.issn.1000-0534.2020.00071 .
null
姚檀栋, 秦大河, 沈永平, 等, 2013.青藏高原冰冻圈变化及其对区域水循环和生态条件的影响[J].自然杂志35(3): 179-186.
null
岳广阳, 赵林, 赵拥华, 等, 2013.青藏高原西大滩多年冻土活动层土壤性状与地表植被的关系[J].冰川冻土35(3): 565-573.DOI: 10.7522/j.issn.1000-0240.2013.0065 .
null
赵林, 盛煜, 2019.青藏高原多年冻土及变化[M].北京: 科学出版社.
PDF(5675 KB)

2276

Accesses

0

Citation

Detail

Sections
Recommended

/