
Sensitivity Analysis of Noah-MP Model Parameterization Schemes for Soil Moisture Simulation in the High-Cold Region of the Upper Heihe River Basin
Kexiu HUANG, Yuanhong YOU, Yanyu LU, Ying HAO, Zuo WANG, Jing SUN
Sensitivity Analysis of Noah-MP Model Parameterization Schemes for Soil Moisture Simulation in the High-Cold Region of the Upper Heihe River Basin
In the context of climate change, accurately simulating soil moisture using land surface process models holds significant importance for weather forecasting, agricultural production, and hydrological processes.This study utilized meteorological observation data from the Arou site in the upper reaches of the Heihe River as the driving data for the Noah-MP model to conduct soil moisture simulation experiments, aiming to assess the soil moisture simulation performance of the Noah-MP model in the alpine mountainous area of the upper reaches of the Heihe River.Without considering uncertainties in model parameters and driving data, arbitrary combinations of the parameterization schemes for different physical processes of the Noah-MP model were made.A soil moisture multi-parameterization ensemble simulation experiment encompassing 17, 280 different combination schemes was designed.The Natural Selection sensitivity analysis method was employed to analyze the sensitivity of shallow soil moisture simulation results to the parameterization schemes and further quantify the uncertainty range of the simulation results of the soil moisture multi-parameterization ensemble.The results of this research indicate that the Noah-MP model can be applied to simulate soil moisture in the alpine mountainous area of the upper reaches of the Heihe river basin.The model demonstrates relatively high accuracy in simulating shallow soil moisture, and the simulated soil moisture change trends are generally consistent with the observed data.This consistency suggests that the Noah-MP model is well-suited for capturing the dynamics of shallow soil moisture in these regions.However, the simulation accuracy for deep soil moisture is relatively poor, with the simulated soil moisture change trends showing considerable deviations from the observed data.This suggests that there are still challenges in accurately modeling moisture dynamics at greater soil depths, potentially due to the complexity of subsurface hydrological processes in cold and mountainous environments.The analysis also reveals that shallow soil moisture simulation results are sensitive to the parameterization schemes of four physical processes: supercooled liquid water in frozen soil, frozen soil permeability, partitioning precipitation into rainfall and snowfall, and the first-layer snow or soil temperature time scheme.Among these, the parameterization scheme of frozen soil permeability is particularly sensitive, indicating that it plays a crucial role in determining the accuracy of the simulation results.During the soil freeze-thaw cycle in the alpine mountainous area of the upper reaches of the Heihe River, the simulation results of soil moisture during the freezing period showed increased sensitivity to parameterization schemes, making the selection of the parameterization scheme for the soil freezing process the main factor contributing to the uncertainty of the simulation results of the soil moisture multi-parameterization ensemble.
soil moisture / ensemble simulation / parameterization scheme sensitivity analysis {{custom_keyword}} /
Table 1 Parameterization schemes corresponding to the 10 physical processes in the Noah-MP model表1 Noah-MP 模型中10个物理过程对应的参数化方案 |
物理过程 | 参数化方案 |
---|---|
雨雪分离(Partitioning precipitation into rainfall and snowfall, PCP) | I: Jordan91[Default], II: BATS, III: Niu11, IV: WRF, V: Wetbulb |
控制气孔阻力的土壤湿度因子(Soil moisture factor for stomatal resistance and ET, BTR) | I: Noah scheme[Default], II: CLM scheme, III: SSiB scheme |
地表对蒸发或升华的阻抗(Ground resistent to evaporation/sublimation, GRE) | I: Sakaguchi and Zeng scheme[Default], II: Sellers(1992), III: Sellers(1992) for wet soil, d: rsurf=rsurf_snow for snow |
表层拖拽系数(Surface layer drag coefficient, SFC) | I: M-O[Default], II: Original Noah(Chen97) |
雪表层反照率(Snow surface albedo, ALB) | I: BATS[Default], II: CLASS |
植被冠层辐射传输(Radiation transfer, RAD) | I: gap=F<1-VegFrac, II: gap=0, III: gap=1-VegFrac[Default] |
第一层积雪或土壤温度的时间方案(The first-layer snow or soil temperature time scheme, TEMP) | I: Semi-implicit[Default], II: Full implicit, III: same as a.but snow cover for skin temperature calculation |
土壤温度下边界条件(Lower boundary condition of soil temperature, TBOT) | I: Zero-flux scheme, II: Noah[Default] |
冻结土壤中过冷液态水(Supercooled liquid water in frozen soil, FRZ) | I: NY06[Default], II: Koren99 |
冻结土壤渗透(Frozen soil permeability, INF) | I: NY06[Default], II: Koren99 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_citation.content}}
{{custom_citation.annotation}}
|
董世玉, 朱忠礼, 徐自为, 等, 2023.黑河流域表层土壤水分干化特征研究[J].高原气象, 42(3): 771-784.DOI: 10.7522/j.issn.1000-0534.2022.00086.Dong S Y ,
{{custom_citation.content}}
{{custom_citation.annotation}}
|
李芳, 张金龙, 杨环, 等, 2022.基于InVEST模型的黑河流域上游1990 -2018年产水量模拟[J].高原气象, 41(3): 698-707.DOI: 10.7522/j.issn.1000-0534.2022.00057.Li F ,
{{custom_citation.content}}
{{custom_citation.annotation}}
|
孙爽, 郑东海, 刘绍民, 等, 2022.Noah-MP陆面模式在高寒草地生长季水热交换的模拟评估和改进[J].中国科学: 地球科学, 52(4): 679-696.DOI: 10.1360/SSTe-2021-0047.Sun S ,
{{custom_citation.content}}
{{custom_citation.annotation}}
|
王树舟, 马耀明, 吴文玉, 等, 2023.基于Noah-MP陆面模式的青藏高原地表感热和潜热通量分布及变化特征[J].高原气象, 42(1): 25-34.DOI: 10.7522/j.issn.1000-0534.2022.00036.Wang S Z ,
{{custom_citation.content}}
{{custom_citation.annotation}}
|
杨恒, 雷享勇, 郑辉, 等, 2024.Noah-MP陆面过程模式在雅鲁藏布江流域径流模拟中的适用性评估[J].科学通报, 69(Z1): 630-644.DOI: 10.1360/TB-2023-0091.Yang H ,
{{custom_citation.content}}
{{custom_citation.annotation}}
|
尤元红, 黄春林, 张莹, 等, 2019.Noah-MP模型中积雪模拟对参数化方案的敏感性评估[J].地球科学进展, 34(4): 356-365.DOI: 10.11867/j.issn.1001-8166.2019.04.0356.You Y H ,
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
/
〈 |
|
〉 |