k-Nearest Neighbor Method and Its Application toTongchuan Hail Prediction

AN Dong-wei-;YANG Yan;SUN Tian-wen;ZHAO Guo-ling;LI Ming

PDF(939 KB)
Plateau Meteorology ›› 2009, Vol. 28 ›› Issue (1) : 209-213.

k-Nearest Neighbor Method and Its Application toTongchuan Hail Prediction

Author information +
History +

Abstract

Limitations of traditional statistic methods used in weather predicting are analyzed. And the basic theory of k-Nearest Neighbor (kNN) is briefly introduced. Seven factors from high altitude are picked up according to the physic mechanism of hail′s generation. Based on the 248 intact examples of 8 consecutive years, kNN is used to predict hail in Tongchuan in May. Experiment shows kNN′s better performance(the best TS reaches to 0.444). The data in 2005 and 2006 are picked up to do further experiment using the preferred model. Its TS is superior to that of SVM, ANN and the traditional methods which are used by many forecasters. At last, the experiments' results are analyzed, and the applications of kNN in weather broadcasting are further analyzed.

Key words

Tongchuan / k-Nearest Neighbor m / Hail prediction

Cite this article

Download Citations
AN Dong-wei- , YANG Yan , SUN Tian-wen , ZHAO Guo-ling , LI Ming. k-Nearest Neighbor Method and Its Application toTongchuan Hail Prediction. Plateau Meteorology. 2009, 28(1): 209-213

References

[1]翟宇梅, 赵瑞星, 肖仁春, 等. K近邻非参数回归概率预报技术及其应用[J]. 应用气象学报, 2005, 16(4): 453-460
[2]边肇祺, 张学工. 模式识别[M]. 北京: 清华大学出版社, 1987: 133-148
[3]Tom M. Mitchell机器学习[M]. 曾华军, 张银奎等译. 机械工业出版社, 2004: 165-176
[4]陈永义, 俞小鼎, 高学浩, 等. 处理非线性分类和回归问题的一种新方法(I) ——支持向量机方法简介[J]. 应用气象学报, 2004, 15(3): 345-353
[5]Aha D W. Lazy learning[M]. Netherlands: Kluwer Academic Publisher, 1997
[6]Yang Y M. An evaluation of statistical approaches to text categorization[J]. J Information Retrieval, 1999, 1(1/2): 67-88
[7]Han E H, G Karypis, V Kumar. Text categorization using weight adjusted k\|nearest neighbor classification[C]//Cheung D, Williams G J, Li, Q. eds. Proceedings of the 5th Pacific\|Asia Conference on Knowledge Discovery and Data Mining (PAKDD'01).2001: 53-65
[8]Zhang J P, I Mani. kNN approach to unbalanced data distribution: A case study involving information extraction[C]//T Fawcett, N Mishra eds. the Proceedings of the Twentieth International Conference on Machine Learning (ICML03), Workshop on Learning from Imbalanced Datasets II.Washington DC:AAAI Press, 2003.http://www.site.uottawa.ca/~nat/Workshop2003/
[9]Cover T, P E Hart. Nearest neighbor pattern classification, IEEE Trans[M]. On Information Theory, 1967, IT-13(1): 21-27
[10]Duda R O, P E Hart, D G Stork. 模式分类[C].李宏东, 姚天降译. 机械工业出版社/中信出版社, 2003: 132-160
[11]王国强, 蒋延龙, 陈红梅. 近邻估计2线性回归预报模型及其台风暴雨预报试验[J]. 气象科技, 1999, (4): 25-29
[12]周丽华, 尤卫红. 基于多元时间序列的Kn 近邻预测模型[J]. 成都气象学院学报, 1999, (1): 58-62
[13]强学民, 杨修群. 一种改进的相空间近邻等距模式及其在短期气候预测中的试验[J]. 南京大学学报, 2006, 42(3): 290-295
[14]胡淑兰, 武麦凤, 王旭仙, 等关中东部连续性冰雹特征分析[J]. 高原气象, 2006, 25(1): 160-163
[15]刘德祥, 白虎志, 董安祥. 中国西北地区冰雹的气候特征及异常研究[J] . 高原气象, 2004, 23(6): 795-803
[16]赵红岩, 汤懋苍, 杨瑜峰, 等. 西北区冰雹分布及与地温场的相关分析[J] . 高原气象, 2004, 23(6): 781-786
[17]林文实, 范绍佳, 王雪梅, 等. 山地上冰雹云的数值试验研究[J]. 高原气象, 2000, 19(1): 59-65
[18]吴玉霞, 胡朝霞, 李宏宇, 等. 旬邑地区冰雹云的早期识别及数值模拟[J]. 高原气象, 2002, 21(2): 159-166
PDF(939 KB)

941

Accesses

0

Citation

Detail

Sections
Recommended

/