A Case Study of Plateau Vortex Moving East Ward with HeavyRainfalls Based on Helicity and Non\|Geostrophic Wet Q-Vector

PDF(4933 KB)
Plateau Meteorology ›› 2009, Vol. 28 ›› Issue (2) : 319-326.

A Case Study of Plateau Vortex Moving East Ward with HeavyRainfalls Based on Helicity and Non\|Geostrophic Wet Q-Vector

Author information +
History +

Abstract

Using NCEP global 1°×1° final\|analysis data and the routine observation data, with the theories of helicity and non\|geostrophic wet Q\|vector, a case of Plateau vortex moving east which caused heavy precipitation was analyzed by both synoptic analysis and dynamic methods. The results show that 500 hPa horizontal distribution of z\|helicity can give good direction to the movement of vortex center and distribution of rainfall, the heavy precipitation is located in the great grads ofpositivehelicity. z-helicity can reflect the dynamic character of weather when the rainstorm occurred, and divergence of negative vorticity on higher levelmatched convergence of positive vorticityon lower leve1 is a dynamic mechanism to trigger heavy precipitation. Relative spiral of more comprehensively reflect the rainfall districts and rainfall distribution center, and the next 6 h after the precipitation to the districts and have a better prediction of heavy precipitation occurred in a relatively central spiral of plus and minus centres connect the maximum gradient value of the positive side.Low level convergence of non-geostrophic wet Q-vector as a powerful tool to diagnose precipitation qualitatively has good relation to rain falls, convergence center are correlation with precipitation intensity; cross-section of wet Q-vector divergence provided good reference information for the distribution and movement of precipitation.

Key words

Plateau vortex / Diagnostic analysis / Helicity / Non-geostrophic wet

Cite this article

Download Citations
. A Case Study of Plateau Vortex Moving East Ward with HeavyRainfalls Based on Helicity and Non\|Geostrophic Wet Q-Vector. Plateau Meteorology. 2009, 28(2): 319-326

References

[1]钱正安, 单扶民. 雨季中高原西部初生涡的分析[C]. 青藏高原气象科学试验文集(一), 北京: 科学出版社, 1984: 229-242
[2]彭贵康. 青衣江流域“93.7”特大暴雨天气分析[J]. 四川气象, 1994, 2: 1-9
[3]杨克明, 毕宝贵, 李月安, 等. 1998年长江上游致洪暴雨的分析研究[J]. 气象, 2001, 27(8): 9-14
[4]张顺利, 陶诗言, 张庆云, 等. 1998年夏季中国暴雨洪涝灾害的气象水文特征[J]. 应用气象学报, 2001, 12(4): 359-364
[5]叶笃正, 高由禧编著. 青藏高原气象学[M]. 北京: 科学出版社, 1979: 122-126
[6]李国平. 青藏高原动力气象学(第二版)[M]. 北京: 气象出版社, 2007: 153-213
[7]宋敏红, 钱正安. 高原及冷空气对1998和1991年夏季西太副高及雨带的影响[J]. 高原气象, 2002, 21(6): 556-564
[8]刘富明, 洑梅娟. 东移的青藏高原低涡的研究[J]. 高原气象, 1986, 5(2): 125-134
[9]郁淑华. 高原低涡东移过程的水汽图像[J]. 高原气象, 2002, 21(2): 199-204
[10]郁淑华, 何光碧. 水汽图像在高原天气预报中应用的初步分析[J]. 高原气象, 2003, 22(增刊): 75-82
[11]陈忠明, 闵文彬, 缪强, 等. 高原涡与西南涡耦合作用的个例诊断[J]. 高原气象, 2004, 23(1): 76-80
[12]侯瑞钦, 程麟生, 冯伍虎. “98. 7”特大暴雨低涡的螺旋度和动能诊断分析[J]. 高原气象, 2003, 22(2): 202-208
[13]陆慧娟, 高守亭. 螺旋度及螺旋度方程的讨论[J]. 气象学报, 2003, 61(6): 684-691
[14]岳彩军, 寿亦萱, 寿绍文, 等. 我国螺旋度的研究及应用[J]. 高原气象, 2006, 25(4): 754-762
[15]王淑静. 螺旋度与区域暴雨落区[Z]. 省地气象台短期预报岗位培训教材.北京: 气象出版社, 1998: 121-123
[16]杨越奎. “91. 7”梅雨锋暴雨的螺旋度研究[J]. 气象学报, 1994, 52(3): 379-383
[17]吴宝俊, 许晨海, 刘岩英, 等. 螺旋度在分析一次三峡大暴雨中的应用[J]. 应用气象学报, 1996, 7(1): 108-112
[18]寿绍文, 王祖锋. 1991年7月上旬贵州地区暴雨过程物理机制的诊断研究[J]. 气象科学, 1998, 18(3): 231-238
[19]黄勇, 张晓芳, 陆汉城. 平均螺旋度在强降水过程中的诊断分析[J]. 气象科学, 2006, 26(2): 171-176
[20]迟竹萍, 李昌义, 刘诗军. 一次山东春季大暴雨中螺旋度的应用[J]. 高原气象, 2006, 25(5): 792-799
[21]姚秀萍, 于玉斌. 非地转湿Q矢量及其在华北特大台风暴雨中的应用[J]. 气象学报, 2000, 58(4): 436-446
[22]岳彩军, 董美莹, 寿绍文, 等. 改进的湿Q 矢量分析方法及梅雨锋暴雨形成机制[J]. 高原气象, 2007, 26(1): 165-175
[23]罗四维. 青藏高原及其邻近地区几类天气系统的研究[M]. 北京: 气象出版社, 1992: 7-53
[24]Lilly D K. The structure, energetics and propagation of rotating convective storms. Part II: Helicity and storm stabilization[J]. J Atmos Sci, 1986, 43: 126-140
[25]Woodall G R. Qualitative forecasting of tornadic activity using storm\|relative environmental helicity[C]. Preprint 16th conference on severe local storm helicity. 1990: 311-315
[26]Davies-Jones R P, D W Burgess, M Foster. Test of helicity as tornado forecasting parameter[C]. Preprint 16th Conf. on severe local storms. Kananaskis Park, AB, Canada, Amer Meteor Soc, 1990: 588-593
[27]姚秀萍, 于玉斌. 完全Q 矢量的引入及其诊断分析[J]. 高原气象, 2001, 20(2): 209-213
[28]岳彩军, 寿绍文, 董美莹. 定量分析几种Q矢量[J]. 应用气象学报, 2003, 14(1): 40-48
[29]岳彩军, 寿亦萱, 寿绍文, 等. Q矢量的改进与完善[J]. 热带气象学报, 2003, 19(3): 308-316
PDF(4933 KB)

808

Accesses

0

Citation

Detail

Sections
Recommended

/