Using a 3D dynamic-electrification coupled model combined with the data of lightning location system, radar and precipitation, a thunderstorm occurring in Jilin province, is simulated, and the typical thunderstorm activity in Naqu district of Qinghai-Xizang Plateau is compared to each other. The model results show that the tripolar structures are produced when the electric field reaches the breakdown value, and the negative charge region locates near -10℃temperature level. The strongelectric activity begins when the updraft velocity achieves -10~-15℃temperature level. The appearing time of maximal ascending velocity is and earlier than the appearing time of maximal electric field. The frequency of lightning is relative to the height of the cloud and the intensity of radar echo, and the higher the top of the cloud is, the more the frequency of the lightning is; the lightning takes place less when the top of the cloud lower than 6 km. The character of the Plateau storm is different from that of the thunderstorm take place in the north of China obviously.
.
Numerical Simulation of Electricity Characteristic ofa Thunderstorm Case in Summer of Jilin. Plateau Meteorology. 2009, 28(2): 385-394
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
References
[1]Takahashi T. Riming electrification as a charge generation mechanism in thunderstorms[J]. J Atmos Sci, 1978, 35: 1536-1548 [2]Kuettner J P, Z Levin, J D Sartor. Thunderstorm electrification\|inductive or non\|inductive?[J]. Quart J Roy Meteor Soc, 1981, 101: 2270-2484 [3]Rawling F. Anumerical study of thunderstorm electrification using a 3D model in corporating the ice phase[J]. Quart J Roy Meteor Soc, 1982, 108: 779-800 [4]Takahashi T. Thunderstorm electrification-A numerical[J]. J Atmos Sci, 1984, 41: 2541-2558 [5]Ziegler C, Mac Gorman D, J Dye, et al. A model evaluation of non\|inductive graupel\|ice charging in the early electrification of a mountain thunderstorm[J]. J Geophys Res, 1991, 96: 12833-12855 [6]Helsdon J H Jr, W A Wojcik, R D Farley. An examination of thunderstorm\|charging mechanisms using a two\|dimensional storm electrification model[J]. J Geophys Res, 2001, 106: 1165-1192 [7]Saunders C P R. The effect of liquid water on thunderstorm charging[J]. J Geophys Res, 1991, 96: 11007-11017 [8]言穆弘, 葛正谟. 雹云中与冰相有关的起电机制[J]. 高原气象, 1985, 4(1): 46-56 [9]言穆弘, 郭昌明, 葛正谟. 积云动力和电过程二维模式研究Ⅰ. 理论和模式[J]. 地球物理学报, 1996, 39(增刊): 52-64 [10]言穆弘, 郭昌明, 葛正谟. 积云动力和电过程二维模式研究 Ⅱ. 计算结果[J]. 地球物理学报, 1996, 39(增刊): 65-74 [11]张义军, 言穆弘, 刘欣生. 雷暴中放电过程的模式研究[J]. 科学通报, 1999, 44: 1322-1325 [12]Heldson J H, Jr G Wu, R D Farley. An intracloud lightning parameterization scheme for a storm electrification model[J]. J Geophys Res, 1992, 97: 5865-5884 [13]孙安平, 言穆弘, 张义军. 三维强风暴动力-电耦合数值模拟研究 Ⅰ: 模式及其电过程参数化方案[J]. 气象学报, 2002, 60(6): 722-731 [14]孙安平, 言穆弘, 张义军. 三维强风暴动-电耦合数值模拟研究 Ⅱ: 电结构形成机制[J]. 气象学报, 2002, 60(6): 732-739 [15]孔凡铀, 黄美元, 徐华英.对流云中冰相过程的三维数值模拟Ⅰ: 模式建立及冷云参数化[J]. 大气科学, 1990, 14(4): 441-453 [16]侯团结, 牛生杰, 雷恒池, 等. 长春地区对流云起电过程的数值模拟[J]. 南京气象学院学报, 2008, 31(2): 221-227 [17]Jayaratne E R, C P R Saunders, J Hallet. Laboratory studies of the charging of soft hail during ice crystal interactions[J]. Quart J Roy Meteor Soc, 1983, 109: 609-630 [18]Sun Anping, Yan Muhong, Zhang Yijun, et al. Numerical study of thunderstorm electrification with a three\|dimensional dynamics and elcectrification coupled modelⅠ Model description and parameterization of electrical processes[J]. ACTA Meteor Sin, 2002, 16(1): 107-122 [19]Krehbial P R, M Brook, R Mccrory. An analysis of the charge structure of lightning discharge to ground[J]. J Geophys Res, 1979, 84(E5): 2423-2456 [20]言穆弘、 刘欣生, 安学敏, 等. 雷暴非感应起电机制的模拟研究 Ⅱ: 环境因子影响[J]. 高原气象, 1996, 15(4): 438-447 [21]郭凤霞, 张义军, 言穆弘. 青藏高原那曲地区雷暴云电荷结构特征数值模拟研究[J]. 大气科学, 2007, 31(1): 28-36 [22]张翠华, 言穆弘, 董万胜, 等. 青藏高原雷暴天气层结特征分析[J].高原气象, 2005, 24(5): 741-747 [23]Liu Xinsheng, Ye Zongxiu, Shao Xuanmin, et al. Intracloud lightning discharges in the lower part of thundercloud[J]. ACTA Meteor Sin, 1989, 3: 212-219 [24]郭凤霞, 张义军, 郄秀书, 等. 雷暴云不同空间电荷结构数值模拟研究[J]. 高原气象, 2003, 22(3): 269-274