Daily precipitation data simulated byhigh-resolution version of MIROC(MIROC_Hires, Model for Interdisciplinary Research On Climate) is used to analyze changes in different-classprecipitation characteristics over eastern China under global warming.The results show that the MIROCmodel can well reproducenot only the spatial distribution but also the seasonal changes of precipitationover eastern Chinain 1971-2000. Since in the whole eastern China, the precipitation intensity differs much from south to north, characteristics of precipitation in South China, Yangtze-Huaihe Basin, North China and Northeast China are analyzed, respectively. Comparing with the quantityand frequency of different-class precipitation between the period of 1971-2000 and 2071-2100, there are siginficant changesin the four regions. In South China, increase in frequencies of non-precipitationand heavy (≥24 mm·d-1) rainfall days is significant, up to 13.8 d·a-1 and 4.2 d·a-1, respectively, and those of relatively weak (1~12 mm·d-1) rainfall days decrease. In Yantze-Huaihe Basin, the mean annual precipitation averaged over the region increases while frequencies of heavy rainfall days increase by 3.6 d·a-1 and those of relatively weak rainfall days decrease. In North China, the increase of mean annual precipitation is the most significant in the four regions, up to 30.5%, while frequencies of non-precipitation increase. In Northeast China, though the rainfall intensity in present days is not so much as in the other three regions, the frequencies of rainfall days increase either. As the rainfall intensity increases in the four regions, events of the extreme rainfall days are supposed to increase.
Key words
Eastern China /
Amount of different- /
Frequency of differe /
Coupled model /
Global warming
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
References
[1]Hennessy K J, J M Gregory, J F B Mitchell. Changes in daily precipitation under enhanced greenhouse conditions[J]. Climate Dyn, 1997, 13: 667-680.
[2]Emori S, A Hasegawa, T Suzuki, et al. Validation, parameterization dependence and future projection of daily precipitation simulated with a high-resolution atmospheric GCM[J]. Geophys Res Let, 2005: 32, L06708, doi: 10.1029/2004GL022306
[3]Fujibe F, N Yamazaki, M Katsurayama, et al. The increasing trend of intense precipitation in Japan based on four-hourly data for a hundred years[J]. Sola, 2005: 1, 41-44, doi:10.2151/sola. 2005-012.
[4]Groisman P Y, T R Karl, D R Easterling, et al. Changes in the probability of heavy precipitation: Important indicators of climatic change. Climatic Change, 1999, 42: 243-283
[5]Harasawa H. Comparison of the Present-day climate simulation over Asia in selected coupled atmosphere-ocean global climate models[J]. J Meteor Soc Japan, 2000, 78: 871-879
[6]Kang I.-S, K Jin, B Wang, et al. Intercomparison of the climatological variations of Asian summer monsoon precipitation simulated by 10 GCMs[J]. Climate Dyn, 2002, 19: 383-395
[7]尤凤春, 张海霞, 张延宾, 等. 日本全球海-气耦合模式对中国夏季降水的预测试验[J]. 高原气象, 2007, 26(5): 975-979.
[8]IPCC, Climate Change 2007: The Physical Science Basis[R]. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 2007: 996
[9]Kimoto M, N Yasutomi, C Yokoyama, et al. Projected changes in precipitation characteristics around Japan under the global warming[J]. Sola, 2005, 1: 85-88
[10]Yaocun Zhang, Masaaki Takahashi, Lanli GUO. Analysis of the East Asian Subtropical Westerly Jet simulated by CCSR/NIES/FRCGC coupled climate system model[J]. J Meteor Soc Japan, 2008, 86(2): 257-278
[11]张耀存, 况雪源. 一个气候系统模式FGCM0对东亚副热带西风急流季节变化的模拟[J]. 大气科学, 2006, 30(6): 1177-1188
[12]黄丹青, 钱永甫. Community Climate Model 3模拟夏季极端降水的初步分析[J]. 南京大学学报(自然科学版), 2007, 43(3): 238-248
[13]张耀存, 郭兰丽. 东亚副热带西风急流偏差与中国东部雨带季节变化的模拟[J]. 科学通报, 2005, 50(13): 1394-1399
[14]胡娅敏, 丁一汇. 东亚地区区域气候模拟的研究进展[J]. 地球科学进展, 2006, 21(9): 956-964.
[15]钱永甫, 王谦谦, 刘华强, 等. 中国区域气候变化的模拟和问题[J]. 高原气象, 1999, 18(3): 341-349
[16]钱永甫, 周宁芳, 毕云. 高层大气温度和高度场异常对我国地面气温和降水的影响[J]. 高原气象, 2004, 23(4): 417-428
[17]况雪源, 张耀存. 东亚副热带西风急流位置异常对长江中下游夏季降水的影响[J]. 高原气象, 2006, 25(3): 382-388
[18]彭京备, 陈烈庭, 张庆云. 青藏高原异常雪盖和ENSO的多尺度变化及其与中国夏季降水的关系[J]. 高原气象, 2005, 24(3): 366-377
[19]吕世华, 陈玉春. 区域气候模式对华北夏季降水的气候模拟[J]. 高原气象, 1999, 18(4): 632-640
[20]王志福, 钱永甫, 林惠娟. 区域海气耦合模式对我国极端降水模拟分析[J]. 高原气象, 2008, 27(1): 113-121
[21]王雨. 若干数值模式对2003年夏季青藏高原中南部降水预报检验[J]. 高原气象, 2004, 23(增刊): 53-58
[22]宁亮, 钱永甫. 中国年和季各等级日降水量的变化趋势分析[J]. 高原气象, 2008, 27(5): 1010-1020
[23]高荣, 董文杰, 韦志刚. 西北干旱区感热异常对中国夏季降水影响的模拟[J]. 高原气象, 2008, 27(2): 320-324
[24]李春, 韩笑. 东亚夏季风北界与我国夏季降水关系的研究[J]. 高原气象, 2008, 27(2): 325-330
[25]许吟隆, 张勇, 林一骅, 等. 利用PRECIS 分析SRES B2 情景下中国区域的气候变化响应[J]. 科学通报, 2006, 51(17): 2068-2074
[26]柳艳香, 吴统文, 郭裕福, 等. 华北地区未来30年气候变化趋势模拟研究[J]. 气象学报, 2007, 65(1): 45-51