β效应和垂直切变对台风非对称结构及眼墙替换的影响

PDF(1347 KB)
Plateau Meteorology ›› 2010, Vol. 29 ›› Issue (6) : 1474-1484.

Author information +
History +

Abstract

A long\|standing issue on the role of vertical shear and β\|effect on tropical cyclone intensity and structure is studied through a series of numerical experiments underdifferent vertical wind shears (VWS)inf\| and β\| planes using the fully compressible, nonhydrostatic tropical cyclone model\|TCM4. The result shows that: (1) When a TC is embedded in a relatively week VWS, the intensityof this TC will finally become a steady\|state, by researching the sensitivity of the steady\|state intensity to the VWS, we suggest that it may be more appropriate to discuss the threshold of a VWS for a TC to stay above a certain intensity (typhoon, tropical storm and tropical depression) instead of a threshold to determine whether a TC would weaken or intensify undera VWS.(2) In f\|plane, the vorticity advection are changed with height caused by vertical shear, which in turn produces low\|level convergence ahead of and to the left of the shear vector, with the air then rising in a cyclonic spiral, correspond to this, the outflow level exist a divergence region, producing convection and rain on the downshear left. (3) Planetary vorticity gradient (β\|effect) could also cause a certain asymmetric, when consideringthe superposition effect of β\|effect and VWS,the asymmetric is more than it cause individual by β\|effect or VWS, and the severe convection concentrate on the left front of the shear vector. (4) The eyewall replacement phenomena may have a certain degree of predictability because they appear to depend on the β\|effect and VWS.

Key words

TCM4 model / Vertical wind shear / Asymmetric / Eyewall replacement

Cite this article

Download Citations

References

[1]McBride J L, R M Zehr. Observational analysis of tropical cyclone formation. Part II: Comparison of non\|developing versus developing systems [J]. Atmos Sci,1981, 38: 1132-1151.
[2]Zehr R M.Tropical cyclogenesis in the western North Pacific[R]. NOAA Tech Rep, 1992, NESDIS61, 181.
[3]Marks F D Jr,R A Houze Jr, J F Gamache.Dualaircraft investigation of the inner core of Hurricane Norbert. Part I: Kinematic structure[J]. J Atmos Sci,1992, 49: 919-942.
[4]Franklin J L, S J Lord, S E Feuer, et al.The kinematic structure of Hurricane Gloria (1985) determinedform nested analyses of dropwinsonde and Doppler wind data[J]. Mon Wea Rev,1993, 121: 2433-2451.
[5]Gray W M.Global view of the origin of tropical disturbances and storms[J]. Mon Wea Rev, 1968, 96: 669-700.
[6]Jones S C.The evolution of vortices in vertical shear: I: Initially barotropic vortices[J]. Quart J Roy Meteor Soc, 1995, 121: 821-851.
[7]DeMaria M.The effect of vertical shear on tropical cycloneintensity change[J]. J Atmos Sci,1996, 53: 2076-2087.
[8]Wang Y, G J Holland. Tropical cyclone motion and evolution in vertical shear[J]. J Atmos Sci, 1996, 53: 3313-3332.
[9]Bender M A.The effect of relative flow on the asymmetricstructure of the interior of hurricanes[J]. J Atmos Sci,1997, 54: 703-724.
[10]Frank W M, E A Ritchie.Effects of vertical wind shear on the intensity and structure of numerically simulated hurricanes[J]. Mon Wea Rev, 2001, 129: 2249-2269.
[11]Wu Liguang.Effects of environmentally induced asymmetries on hurricane intensity: A numerical study[J]. J Atmos Sci, 2005, 61: 3065-3081.
[12]Zhang Kieu. Genesis of Tropical Storm Eugene (2005) from Merging Vortices Associated with ITCZ Breakdowns. Part I: Observational and Modeling Analyses[J]. J Atmos Sci,2008, 65:3419-3439.
[13]Riemer M,T Montgomery, M E Nicholls. A new paradigm for intensity modification of tropical cyclones: Thermodynamic impact of vertical wind shear on the inflow layer[C].Atmos Chem Phys Discuss, 2009, 9:10711-10775.
[14]Wang Y. An explicit simulation of tropical cyclones with a triply nested movable mesh primitive equation model: TCM3. Part I: Model description and control experiment[J]. Mon Wea Rev, 2001, 129: 1370-1394.
[15]Wang Y. An explicit simulation of tropical cyclones with a triply nested movable mesh primitive equation model: TCM3. Part II: Some model refinements and sensitivity to cloud microphysics parameterization[J]. Mon Wea Rev, 2002, 130: 3022-3036.
[16]Wang Y.A multiply nested, movable mesh, fully compressible, nonhydrostatic tropical cyclone model - TCM4: Model description and development of asymmetries without explicit asymmetric forcing[J]. Meteor Atmos Phys,2007, 97: 93-116.
[17]Durran D R, J B Klemp.On the effects of moisture on the Brunt\|Vaislfrequency[J]. J Atmos Sci,1982, 39: 2152-2158.
[18]叶成志, 李昀英, 黎祖贤.两次严重影响湖南的登陆台风水汽场特征数值模拟[J]. 高原气象, 2009, 28(1): 98-107.
[19]卓嘎, 谢金南, 马镜娴.登陆台风与我国降水的统计关系[J].高原气象, 2000, 19(2): 260-264.
[20]Frank W M, E A Ritchie.Effects of environmental flow on tropical cyclone structure[J]. Mon Wea Rev, 1999, 127: 2044-2061.
[21]DeMaria M, J Kaplan. Sea surface temperature and maximum intensity of Atlantic tropical cyclones[J].Climate, 1994, 7: 1324-1334.
[22]端义宏, 余晖.热带气旋强度变化研究进展[J].气象学报, 2005, 63(5): 636-645.
[23]Peng M S, B F Jeng, R T Williams.A numerical study on tropical cyclone intensification. Part I: Beta effect and mean flow effect[J]. J Atmos Sci, 1999,56: 1404-1423.
[24]杨洪波, 张铭. 热带气旋中β偶极涡的数值模拟[J]. 热带气象学报, 2002, 18(3): 211-218.
[25]Duan Yihong, WU Rongsheng, YU Hui. The Role of β-effect and a uniform current on tropical cyclone intensity[J]. Adv Atmos Sci, 2004, 21: 75-86.
[26]Zhu T, D L Zhang, F Weng.Numerical simulation of Hurricane Bonnie (1998). Part I: Eyewall evolution and intensity changes[J]. Mon Wea Rev,2004, 132: 225-241.
[27]康志明, 陈寿, 钱传海,等. 0604号强热带风暴“碧利斯”特大暴雨的诊断研究[J].高原气象, 2008, 27(3): 596-607.
[28]黄小玉, 胡文东, 孙弘, 等.“碧利斯”与“圣帕”引发湘东南特大暴雨雷达回波对比分析[J].高原气象, 2009, 28(3): 626-633.
[29]岳彩军, 寿绍文, 曾刚, 等.“海棠”(Haitang)台风降水非对称分布成因初步研究[J]. 高原气象, 2008, 27(6): 1333-1342.
[30]Wang Y, C C Wu.Current understanding of tropical cyclone structure and intensity changes\_A review[J]. Meteor Atmos Phys, 2004,87: 257-278.
PDF(1347 KB)

1312

Accesses

0

Citation

Detail

Sections
Recommended

/