Numerical Experimentation of Local Underlying Surface EffectBased on WRF Model in Three Gorges Area

PDF(1484 KB)
Plateau Meteorology ›› 2011, Vol. 30 ›› Issue (1) : 83-93.

Numerical Experimentation of Local Underlying Surface EffectBased on WRF Model in Three Gorges Area

Author information +
History +

Abstract

Based on WRF model, the local effect of the Yangtze River and local topography were studied betweenprecipitation and non\|precipitation events in the Three Gorges area. The results showed that in the process of precipitation event, the underlying surface water bodies provided the local water vapor for precipitation, and the near\|surface valley wind that was forced dynamically by the local bell mouth and canyon terrain increased. The southerly airstream affected by the bell topography carried moisture northward, and the valley easterly wind compelled by ‘narrow pipe’ effect of the canyon terrain increased in the downstream section of the Three Gorges area, which enhanced westerly water vapor transportation that converged on the northward moisture affected by northerly wind in the end of the bell mouth terrain. Meanwhile, the changed underlying surface provided latent heat energy for rainfall. The airflow with water vapor was uplifted compulsorily by local terrain and converged with the dry and cold air caused by the unstable stratification from the height, the latent heat energy released instability to lead to precipitation increasing in theregion. On the other hand, in the process of non-precipitation event, the Yangtze River cancool/warmatthe day/night accordingly, and had cold/warm lake effect. The latent heat concentrated in the end of bellmouth with the water underlying surface imbedding and the terrain action. There was no terrain blocking effect on flow, and the southerly flow and the easterly flow enhanced.The variations of circulation characteristicsuggested that both of the water underlying surface and the local terrain were ineligiblyimportant for the weather in the Three Gorges areain different events.

Key words

Three Gorges area / Underlying surface / Topography / Numerical experiment

Cite this article

Download Citations
. Numerical Experimentation of Local Underlying Surface EffectBased on WRF Model in Three Gorges Area. Plateau Meteorology. 2011, 30(1): 83-93

References

[1]刘洪波, 张大林, 王斌. 区域气候模拟研究及其应用研究[J]. 气候变化研究进展, 2006, 11(5): 649-668.
[2]李永华, 刘德, 朱业玉, 等. 重庆市气温及降水变化的奇异谱分析[J]. 高原气象, 2005, 24(5): 798-804.
[3]李永华, 高阳华, 唐云辉. 重庆城区近百余年旱涝变化[J]. 高原气象, 2008, 27(1): 162-168.
[4]周长艳, 李跃清, 李薇. 青藏高原东部及邻近地区水汽输送的气候特征[J]. 高原气象, 2005, 24(6): 880-888.
[5]蒋兴文, 李跃清, 李春, 等. 四川盆地夏季水汽输送特征及其对旱涝的影响[J]. 高原气象, 2007, 26(3): 476-484.
[6]周毅, 高阳华, 段相洪. 三峡库区夏季降水基本气候特征[J]. 西南农业大学学报(自然科学版), 2005, 27(2): 269-272.
[7]张强, 万素琴, 毛以伟, 等. 三峡库区复杂地形下的气温变化特征[J]. 气候变化研究进展, 2005, 1(4): 165-167.
[8]王梅华, 刘莉红, 张强. 三峡地区气候特征[J]. 气象, 2005, 31(7): 68-72.
[9]Miles N L, V Johannes.Observations of transient linear organization and nonlinear scale interactions in lake\|effect clouds. Part I: Transient linear organization[J]. Mon Wea Rev, 2005, 3: 677-691.
[10]Richard O A, H Fredrick, Lian Xie. Simulated physical mechanisms associated with climate variability over Lake Victoria Basin in East Africa[J]. Mon Wea Rev, 2006, 12: 3588-3609.
[11]Bussières N, R J Granger. Estimation of water temperature of Large Lakes in cold climate regions during the period of strong coupling between water and air temperature fluctuations[J]. J Atmos Ocean Tech, 2007, 2: 285-296.
[12]Joshua J S, A R David, R Mark. Boundary layer and microphysical influences of natural cloud seeding on a lake\|effect snowstorm[J]. Mon Wea Rev, 2006, 7: 1842-1858.
[13]姜金华, 胡非, 刘熙明, 等. 水、 陆不均匀条件下大气边界层结构的模拟研究[J]. 南京气象学院学报, 2007, 30(2): 162-169.
[14]吕雅琼, 马耀明, 李茂善, 等. 纳木错湖夏季典型大气边界层特征的数值模拟[J]. 高原气象, 2008, 27(4): 733-740.
[15]吕雅琼, 杨显玉, 马耀明. 夏季青海湖局地环流及大气边界层特征的数值模拟[J]. 高原气象, 2007, 26(4): 686-692.
[16]隋欣, 杨志峰. 青藏高原东部龙羊峡水库气候效应的变化趋势分析[J]. 山地学报, 2005, 23(3): 280-287.
[17]段德寅, 傅抱璞, 王浩, 等. 三峡工程对气候的影响及其对策[J]. 湖南师范大学自然科学学报, 1996, 19(1): 87-92.
[18]张洪涛, 祝昌汉, 张强. 长江三峡水库气候效应数值模拟[J]. 长江流域资源与环境, 2004, 13(2): 133-137.
[19]Wu Liguang, Qiang Zhang, Zhihong Jiang. Three Gorges Dam affects regional precipitation[J]. Geophys Res Lett, 2006,33SC, 33: 1-4.
[20]彭乃志, 傅抱璞, 刘建栋, 等. 三峡库区地形与暴雨的气候分析[J]. 南京大学学报, 1996, 32(4): 728-731.
[21]余锦华, 傅抱璞. 山谷地形对盛行气流影响的数值模拟[J]. 气象学报, 1995, 53(1): 50-61.
[22]张可欣, 汤剑平, 邰庆国, 等. 鲁中山区地形对山东省一次暴雨影响的敏感性数值模拟试验[J]. 气象科学, 2007, 27(5): 510-515.
[23]毕宝贵, 刘月巍, 李泽椿. 秦岭大巴山地形对陕南强降水的影响研究[J]. 高原气象, 2006, 25(3): 485-494.
[24]姜勇强, 王元. 地形对1998年7月鄂东特大暴雨鞍型场的影响[J]. 高原气象, 2010, 29(2): 297-308.
[25]慕建利, 李泽椿, 李耀辉. 高原东侧特大暴雨过程中秦岭山脉的作用[J]. 高原气象, 2009, 28(6): 1282-1298.
[26]赵桂香. 一次阻高背景下地形对晋南特大暴雨的作用分析[J]. 高原气象, 2009, 28(4): 897-905.
[27]周国兵, 沈桐立, 韩余. 重庆“9·4”特大暴雨天气过程数值模拟分析[J]. 气象科学, 2006, 26(5): 572-577.
[28]赵思雄, 傅慎明. 2004年9月川渝大暴雨期间西南低涡结构及其环境场的分析[J]. 大气科学, 2007, 31(6): 1059-1075.
[29]于波, 林永辉. 引发川东暴雨的西南低涡演变特征个例分析[J]. 大气科学, 2008, 32(1): 141-154.
[30]康岚, 冯汉中, 屠妮妮, 等. 一次川渝大暴雨的中尺度分析[J]. 气象, 2008, 34(10): 40-49.
[31]王中, 白莹莹, 杜钦, 等. 一次无地面冷空气触发的西南涡特大暴雨分析[J]. 气象, 2008, 34(12): 63-71.
[32]张强, 王有民, 祝昌汉. 长江三峡局地气候监测系统及设计研究[J]. 气象, 2004, 30(9): 31-35.
PDF(1484 KB)

1248

Accesses

0

Citation

Detail

Sections
Recommended

/