Stream Structure of a Convective Line with Leading StratiformPrecipitation during Meiyu Period

PDF(2475 KB)
Plateau Meteorology ›› 2011, Vol. 30 ›› Issue (4) : 1052-1066.

Stream Structure of a Convective Line with Leading StratiformPrecipitation during Meiyu Period

Author information +
History +

Abstract

A rear-fed leading stratiform mesoscale convective system(RFLS MCS)was observed in middle part of Hubei Province during Meiyu period of 2007. The stream structure feature of the RFLS on June 18, 2007 are analyzed using LAPS of ESRL(Earth System Research Laboratory), USA, and NCEP 1°×1° daily reanalysis data, operational observation and radar data. The horizontal reflectivity structure observed by radar is as follows: Astrong and narrow echo band is in the behind of convective line, and a sub-strong and broad echo area is frontof this convective line, there is a weak echo gouge between them. The convective cells sometime elongated and canted along the convective line.The RFLS systemon 18 June mainly consists of fourflow branches: Rear-to-front inflowat lower level, front-to-rear descending inflow and ascending flow which produce stratiform cloud anvil by tilting the rear-to-front flow in the middle and upper troposphere layer, rear-to-front flowat middle level. The RFLS system on 18 June has an overturning updraft during its early stages, and produce leading stratiform precipitation. In mature stages the vertical flow develops strongly, and the frontal stratiform echoes continue to strengthen. The line-perpendicular vertical wind shear in middle and lower troposphere layers increasing with time and the surface cold pool weakening or keeping changeless with time are the main causes for which this RFLS system updraft flow tilts frontward.

Key words

MCS / Middle and convectiv / Meiyu

Cite this article

Download Citations
. Stream Structure of a Convective Line with Leading StratiformPrecipitation during Meiyu Period. Plateau Meteorology. 2011, 30(4): 1052-1066

References

[1]Zipser E J. The role of organized unsaturated convective downdrafts in the structure and rapid decay of an equatoril disturbance[J]. J Appl Meteor, 1969, 8(5): 799-814.
[2]Zipser E J. Mesoscale and convective-scale downdrafts as distinct components of squall-line circulation[J]. Mon Wea Rev, 1977, 105(12): 1568-1589.
[3]Houze R A Jr.Structure and dynamics of a tropical squallline system observed during GATE[J]. Mon Wea Rev, 1977, 105(12): 1540-1567.
[4]Houze R A Jr, Rutledge S A, Biggerstaff M I, et al.Interpretation of Doppler weather radar displays of midlatitude mesoscale convective systems[J]. Bull Amer Meteor Soc, 1989, 70(6): 608-619.
[5]Smull B F, Houze R A Jr. A midlatitude squall line with a trailing stratiform rain: Radar and satellite observations[J]. Mon Wea Rev, 1985, 113(1): 117-133.
[6]Parker M D, Johnson R H. Organizational modes of midlatitude mesoscale convective systems[J]. Mon Wea Rev, 2000, 128(10): 3413-3436.
[7]Parker M D, Johnson R H.Structures and dynamics of quasi-2D mesoscale convective systems[J]. J Atmos Sci, 2004, 61(5): 545-567.
[8]Orlanski L. A rational subdivision of scales for atmosphericprocesses[J]. Bull Amer Meteor Soc, 1975, 56(5): 527-530.
[9]Shibagaki Y, Yabanaka M D, Shimizu S, et al. Meso-β to meso-γ-scale wind circulations associated with precipitatinglouds near Beiu front observed by the MU and meteorological radars[J]. J Meteor Soc Japan, 2000, 78: 69-91.
[10]Parker M D, Johnson R H. Simulated convective lines with leading precipitation. Part I: Governing dynamics[J]. J Atmos Sci, 2004, 61(14): 1637-1655.
[11]Parker M D, Johnson R H. Simulated convective lines with leading precipitation. Part II: Evolution and maintenance[J]. J Atmos Sci, 2004, 61(14): 1656-1673.
[12]Pettet C R, Johnson R H.Airflow and precipitation structureof two leading stratiform mesoscale convective systems determined from operational datasets[J]. Weather Forecasting, 2003, 18(5): 685-699.
[13]Storm B A, Parker M D, Jorgensen D P. A convective line with leading stratiform precipitation from BAMEX[J]. Mon Wea Rev, 2007, 135(5): 1769-1785.
[14]Rotunno R, Klemp J B, Weisman M L. A theory for strong, long-lived squall lines[J]. J Atmos Sci, 45(3): 463-485.
[15]Weisman M L, Klemp J B, Rotunno R. Structure and evolution for numerically simulated squall lines[J]. J Atmos Soc, 1988, 45(14): 1990-2013.
[16]Moncrieff M W, Liu C H.Convection initiation by density currents: Role of convergence, shear, and dynamical organization[J]. Mon Wea Rev, 1999, 127(10): 2455-2464.
[17]Mechem D B, Houze R A, Chen S S. Layer inflow into precipitating convection over the western tropical Pacific[J]. Quart J Roy Meteor Soc, 2002, 128(584): 1997-2030.
[18]Knight C A, Miller L J, Hall W D. Deep convection and ‘first echoes’ within anvil precipitation[J]. Mon Wea Rev, 2004, 132(7): 1877-1890.
[19]丁一汇, 李鸿洲, 章名立, 等. 我国飑线发生条件的研究[J]. 大气科学, 1982, 6(1): 18-27.
[20]陆汉诚, 吕梅, 何齐强. 一次冷锋后飑线的大振幅重力波特性分析[J]. 应用气象学报, 1992, 3(2): 136-144.
[21]刘勇, 刘子臣, 马延标, 等. 一次飑线过程中龙卷及飑锋生成的中尺度分析[J]. 大气科学, 1998, 22(3): 326-335.
[22]翟国庆, 俞樟孝. 华东飑线过程中的地面中尺度物理特征[J]. 大气科学, 1991, 15(6): 63-69.
[23]侯建忠, 王繁强, 方建刚, 等. 黄土高原一次冷涡飑线的综合分析与数值模拟[J]. 高原气象, 2007, 26(2): 353-362.
[24]矛卫平, 何齐强, 陆汉城, 等. 区域地形影响下冷锋后飑线的数值模拟[J]. 大气科学, 1994, 18(6): 710-719.
[25]王晓芳, 胡伯威. 湖北一次飑线过程的观测分析及其结构的数值模拟[J]. 高原气象, 2010, 29(2): 471-485.
[26]俞小鼎, 郑媛媛, 张爱民, 等. 安徽一次强烈龙卷的多普勒天气雷达分析[J]. 高原气象, 2006, 25(5): 914-924.
[27]刘黎平, 牟容, 许小永, 等. 一次飑线过程的动力和微物理结构及滴谱变化对降水估测的影响研究[J]. 气象学报, 2007, 65(4): 601-611.
[28]杨毅, 邱崇践. 利用多普勒雷达资料分析一次强降水的中尺度流场[J]. 高原气象, 2006, 25(5): 925-931.
[29]付双喜, 王致君, 张杰. 甘肃中部一次强对流天气的多普勒雷达特征分析[J]. 高原气象, 2006, 25(5): 932-941.
[30]王俊, 朱君鉴, 任钟冬. 利用双多普勒雷达研究强飑线过程的三维风场结构[J]. 气象学报, 2007, 65(2): 242-251.
[31]刘淑媛, 孙健, 杨引明. 上海2004年7月12日飑线系统中尺度分析研究[J]. 气象学报, 2007, 65(1): 84-93.
[32]姚叶青, 俞小鼎, 张义军. 一次典型飑线过程多普勒天气雷达资料分析[J]. 高原气象, 2008, 27(2): 373-381.
[33]刘治国, 陶健红, 杨建才, 等. 冰雹云和雷雨单体VIL演变特征对比分析[J]. 高原气象, 2008, 27(6): 1363-1374.
[34]张腾飞, 段旭, 鲁亚斌, 等. 云南一次强对流天气冰雹过程的环流及雷达回波特征分析[J]. 高原气象, 2006, 25(3): 531-538.
[35]李红莉, 崔春光, 王志斌, 等. 中尺度分析系统LAPS应用雷达资料的个例研究[J]. 高原气象, 2009, 28(6): 1443-1452.
[36]Houze Jr R A, Smull B F, Dodge P. Mesoscale organization of springtime rainstorms in Oklahoma[J]. Mon Wea Rev, 1990, 118(3): 613-654.
[37]Weckwerth T M, Wakimoto R M. The initiation and organization of convective cells atop a cold-air outflow boundary[J]. Mon Wea Rev, 1992, 120(10): 2169-2187.
[38]Chapman D, Browning K A. Use of wind-shear displays for Doppler radar data[J]. Bull Amer Meteor Soc, 1998, 79(12): 2685-2692.
[39]Bluestein H B, Jain M H. Formation of mesoscale lines of precipitation: Severe squall lines in Oklahoma during the spring[J]. Mon Wea Rev, 1987, 115(11): 2719-2727.
[40]Chappell C F. Quasi-stationary convective events[M]//Ray P S, ed. Mesoscale Meteorology and Forcasting. Amer Meteor Soc, 1986: 289-310.
[41]胡伯威. 梅雨锋上MCS 的发展、 传播以及与低层“湿度锋”相关联的“CISK”惯性重力波[J]. 大气科学, 2005, 29(6): 845-853.
[42]王晓芳, 崔春光, 胡伯威. 水平风切变强度不均匀相联系的CISK 惯性重力波[J]. 应用气象学报, 2007, 18(6): 760-768.
PDF(2475 KB)

1176

Accesses

0

Citation

Detail

Sections
Recommended

/