Using the conventional and unconventional meteorological observation data, flow pattern configuration, the physical diagnosis of the satellite and radar data for the heavy snowstorm process occurred in Shanxi region from 9 to 12 November 2009 were comprehensively analyzed. The results showed that the durative heavy snowstorm weather process presented against backgrounds of two kinds of circulation, which influenced by 3 middle-α scale snowstorm cloud systems during the heavy snowstorm, the occurring, developing and moving of the heavy snowstorm cloud system were closely linked with 700 hPa shear line and jet flow in low altitude. The analysis results indicate that the three jet flows from northeast, southwest and westwards below 400 hPa were strong and prosperous, and turn around with altitude, which is the main characteristic of the rare heavy snowstorm process flow pattern configuration. The atmosphere stratification below 200 hPa was in instable status and wet layer thickness reaches 200 hPa, the vertical distribution of divergence presented obvious symmetrical structure of convergence in lower level and divergence in upper level, the water vapor convergence quantity below 400 hPa was a fold increase in the period of heavy snowstorm. This kind of configuration of the physical quantity field accelerated the convergence of wet air in lower level and their raising upwards movement, and which provides the advantageous condition for the occurring of snowstorm and heavy snowstorm. The snowfall is positive proportion to the divergence field, the high-low divergence and convergence intensity of vapor flux field, and the wet layer thickness against the background of two kinds of circulation. The increasing of divergence variability has perfect corresponding relationship to the appearing of the snowstorm peak value, and it is an initial lead of 12~18 h.
Key words
Shanxi /
Heavy snowstorm /
Flow pattern configu /
Physical quantity di
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
References
[1]Braham R R. The midwest snow storm of 8-11 December 1977[J]. Mon Wea Rev, 1983, 111(2): 253-272.
[2]Sanders F. Frontogenesis and symmetric stability in amajor New England snowstorm[J]. Mon Wea Rev, 1986, 114(10): 1847-1862.
[3]Ninomiya K. Polar low development over the east coast of Asian continent on 9-11 December 1985[J]. J Meteor Soc Japan, 1991, 69(6): 669-685.
[4]Marwitz J D, Toth J. A case study of heavy snowfall in Oklahoma[J]. Mon Wea Rev, 1993, 121(3): 648-661.
[5]刘宁微, 齐琳琳, 韩江文. 北上低涡引发辽宁历史罕见暴雪天气过程的分析[J]. 大气科学, 2009, 33(2): 275-284.
[6]孙继松, 梁丰, 陈敏, 等. 北京地区一次小雪天气过程造成路面交通严重受阻的成因分析[J]. 大气科学, 2003, 27(6): 1057-1066.
[7]陶祖钰, 郑永光, 张小玲. 2008年初冰雪灾害和华南准静止锋[J]. 气象学报, 2008, 66(5): 850-854.
[8]王建中, 丁一汇. 一次华北强降雪过程的湿对称不稳定性研究 [J]. 气象学报, 1995, 53(4): 451-459.
[9]王东海, 柳崇健, 刘英, 等. 2008年1月中国南方低温雨雪冰冻天气特征及其天气动力学成因的初步分析[J]. 气象学报, 2008, 66(3): 405-422.
[10]徐建芬, 陶健红, 夏建平. 青藏高原切变线暴雪中尺度分析及其涡源研究[J]. 高原气象, 2000, 19(2): 187-197.
[11]杨贵名, 孔期, 毛冬艳, 等. 2008年初“低温雨雪冰冻”灾害天气的持续性原因分析[J]. 气象学报, 2008, 66(5): 836-849.
[12]张小玲, 程麟生. “96.1”暴雪期中尺度切变线发生发展的动力诊断 I: 涡度和涡度变率诊断 [J]. 高原气象, 2000, 19(3): 286-294.
[13]张小玲, 程麟生. “96.1”暴雪期中尺度切变线发生发展的动力诊断 Ⅱ: 散度和散度变率诊断 [J]. 高原气象, 2000, 19(4): 459-466.
[14]赵思雄, 孙建华, 陈红, 等. 北京“12.7”降雪过程的分析研究[J]. 气候与环境研究, 2002, 7(1): 7-21.
[15]朱爱民, 寿绍文. 一次冬季暴雪过程锋生次级环流的诊断分析[J]. 南京气象学院学报, 1994, 17(2): 183-187.
[16]姜学恭, 李彰俊, 康玲, 等. 北方一次强降雪过程的中尺度数值模拟[J]. 高原气象, 2006, 25(3): 476-483.
[17]王文, 程麟生. “96.1”高原暴雪过程三维条件性对称不稳定的数值研究[J]. 高原气象, 2002, 21(3): 225-232.
[18]王文, 程麟生. 96.10高原暴雪过程湿对称不稳定的数值研究[J]. 高原气象, 2000, 19(5): 129-140.
[19]池再香, 胡跃文, 白慧. 2003.10黔东南暴雪天气过程的对称不稳定分析[J]. 高原气象, 2005, 24(5): 792-797.
[20]易笑园, 李泽椿, 朱磊磊, 等. 一次β-中尺度暴风雪的成因及动力热力结构[J]. 高原气象, 2010, 29(1): 175-186.
[21]王正旺, 苗爱梅, 庞转棠, 等. 山西中南部区域性暴雪天气诊断分析[J]. 高原气象, 2010, 29(2): 531-538.
[22]梁军, 张胜军, 王树雄, 等. 大连地区一次区域暴雪的特征分析和数值模拟[J]. 高原气象, 2010, 29(3): 744-754.
[23]赵春雨, 王颖, 李栋梁, 等. 辽宁省冬半年降雪初终日的气候变化特征[J]. 高原气象, 2010, 29(3): 755-762.
[24]杨成芳, 王俊. 利用单多普勒雷达资料做冷流暴雪的中尺度分析[J]. 高原气象, 2009, 28(5): 1034-1041.