Numerical Simulation of Influence of Aerosols on DifferentCloud Precipitation Types in Beijing Area

PDF(1467 KB)
Plateau Meteorology ›› 2011, Vol. 30 ›› Issue (5) : 1356-1367.

Numerical Simulation of Influence of Aerosols on DifferentCloud Precipitation Types in Beijing Area

Author information +
History +

Abstract

Three types of rainfall (rainstorm, moderate rain and slight rain) in Beijing area are simulated using Weather Research and Forecast (WRF3.2) model coupled with Milbrandt-two-moment cloud microphysics scheme, under the continental and maritime aerosol concentration, to explore the influence of aerosols on cloud precipitation. The results indicate that the aerosol increase has various influences on the cloud precipitation: (1) Influencing the ground precipitation. With the increasing of aerosol concentration in Beijing area, 48 h total precipitation of the rainstorm and moderate rain are decreased 23% and 16.6%, and 24 h total precipitation of slight rain decreased 14%;(2) Influencing the surface precipitation distribution.The average precipitation of the rainstorm is increased in the most of parts of western Beijing and reduced over 20 mm in the most of parts of easternBeijing with the increasing of aerosol concentration. The average precipitation of the moderate rainfall decreases 0.1~5 mm in the most of parts of Beijing area. With the increasing of aerosol concentration, the precipitation in western Beijing increase in the slight rainfall process, but eastern, decrease. (3) Influencing the ground precipitation intensity. With the increasing of aerosol concentration the rainfall duration of the rainstorm is prolonged in the high aerosol concentration. An earlier precipitation termination of the moderate rain is found with the increasing of aerosol concentration;(4) Influencing the airbornehydrometeors. The increasing of aerosol concentration causes higher cloud water concentration and lower rain water during the rainstorm and moderate rainprocesses .

Key words

Beijing area / Aerosols / Cloud precipitation / Numerical simulation

Cite this article

Download Citations
. Numerical Simulation of Influence of Aerosols on DifferentCloud Precipitation Types in Beijing Area. Plateau Meteorology. 2011, 30(5): 1356-1367

References

[1]Ramanathan V, Crutzen P J, Kiehl J T, et al. Aerosols, climate, and the hydrological cycle[J]. Science, 2001, 294(5549): 2119-2124.
[2]Menon S, Hansen J, Nazarenko L, et al. Climate effects of black carbon aerosols in China and India[J]. Science, 2002, 297(5590): 2250-2253.
[3]Rosenfeld D, Lohmann U, Raga G B, et al. Flood or Drought: How do aerosols affect precipitation[J]. Science, 2008, 321(5894): 1309-1313.
[4]庄炳亮,王体健,李树.中国地区黑碳气溶胶的第一间接辐射强迫与气候效应[J].高原气象, 2009, 28(5): 1095-1104.
[5]邓涛,张镭,吴兑,等.兰州地区高云和气溶胶光学特性及其辐射效应[J].高原气象, 2010, 29(1): 230-235.
[6]陈添宇,郑国光,陈跃,等.祁连山夏季西南气流背景下地形云形成和演化的观测研究[J].高原气象, 2010, 29(1), 152-163.
[7]何清,金莉莉,杨兴华,等.秋季南疆沙漠塔中边界层O3浓度及影响因子分析[J].高原气象, 2010, 29(1): 214-221.
[8]武荣盛,马耀明.青藏高原不同地区辐射特征对比分析[J].高原气象, 2010, 29(2): 251-259.
[9]高枞亭,张仁健,苏丽欣.长春秋冬季大气黑碳气溶胶的特征分析[J].高原气象, 2009, 28(4): 803-807.
[10]李祥余,何清,黄少鹏,等.南疆一次强沙尘暴前后塔中近地面各气象要素的变化特征[J].高原气象, 2009, 28(3): 652-662.
[11]Andreae M O, Rosenfeld D, Artaxo P, et al. Smoking rain clouds over the amazon[J]. Science, 2004, 303(5662): 1337-1342.
[12]Bell T L, Rosenfeld D, Kim K-M, et al. Midweek increase in U.S. summer rain and storm heights suggests air pollution invigorates rainstorms[J]. J Geophys Res, 2008, 113(D02209): doi:10.1029/2007JD008623.
[13]邵振艳,周涛,史培军,等.大气污染对中国重点城市地面总辐射影响的时空特征[J].高原气象, 2009, 28(5): 1105-1114.
[14]范引琪,李春强. 1980-2003年京、 津、 冀地区大气能见度变化趋势研究[J].高原气象, 2008, 27(6): 1392-1400.
[15]Remer L A, Kleidman R G, Levy R C, et al. Global aerosol climatology from the MODIS satellite sensors[J]. J Geophys Res, 2008, 113(D14S07): doi:10.1029/2007JD009661.
[16]段婧,毛节泰.华北地区气溶胶对区域降水的影响[J].科学通报, 2008, 53(23): 2947-2955.
[17]王喜全,王自发,齐彦斌,等.城市化进程对北京地区冬季降水分布的影响[J].中国科学(D辑), 2008, 38(11): 1438-1443.
[18]王秀荣,王维国,刘还珠,等.北京降水特征与西太副高关系的若干统计[J].高原气象, 2008, 27(4): 822-829.
[19]范广洲,吕世华.地形对华北地区夏季降水影响的数值模拟研究[J].高原气象, 1999, 18(4): 659-667.
[20]Qian Y, Gong D, Fan J, et al. Heavy pollution suppresses light rain in China: Observations and modeling[J]. J Geophys Res, 2009, 114(D00K02 ): doi:10.1029/2008JD011575.
[21]Milbrandt J A, Yau M K. A multimoment bulk microphysics parameterization. Part I: Analysis of the role of the spectral shape parameter[J]. J Atmos Sci, 2005, 62(9): 3051-3064.
[22]Milbrandt J A, Yau M K. A multimoment bulk microphysics parameterization. Part IV: Sensitivity experiments[J]. J Atmos Sci, 2006, 63(12): 3137-3159.
[23]Milbrandt J A, Yau M K, Mailhot J, et al. Simulation of an orographic precipitation event during IMPROVE-2. Part I: Evaluation of the control run using a triple-moment bulk microphysics scheme[J]. Mon Wea Rev, 2008, 136(10): 3873-3893.
[24]Milbrandt J A, Yau M K, Mailhot J, et al. Simulation of an orographic precipitation event during IMPROVE-2. Part II: Sensitivity to the number of moments in the bulk microphysics scheme[J]. Mon Wea Rev, 2010, 138(2): 625-642.
[25]Cohard J M, Pinty J P, Suhre K. On the parameterization of activation spectra from cloud condensation nuclei microphysical properties[J]. J Geophys Res, 2000, 105(D9): 11753-11766.
PDF(1467 KB)

1049

Accesses

0

Citation

Detail

Sections
Recommended

/