Comparative Analysis on MCC and Cloud Clusters of General Rainstorm during ‘0811’ Rainstorm Process

MIAO Ai-Mei;DONG Chun-Qing;ZHANG Hong-Yu;SHEN Li-Wen;LI Miao

PDF(2222 KB)
Plateau Meteorology ›› 2012, Vol. 31 ›› Issue (3) : 731-744.
articel

Comparative Analysis on MCC and Cloud Clusters of General Rainstorm during ‘0811’ Rainstorm Process

Author information +
History +

Abstract

The mesoscale convective complex(MCC) in the south of Shanxi and the rainstorm cloud clusters in the north of Shanxi on August 11, 2010 are comparatively analyzed by using T639 1°×1° reanalysis data, FY-2 infrared satellite image and infrared black body temperature (TBB) data, lightning data and total column water vapor data. Itdemonstrate that rainstorm area in the north of Shanxi was causedby the generation, development, merger of 6 meso-β-scale convective cloud clusters, and the south regional rainstorm happened with the generation, development and eastward movement of the mesoscale convective complex (MCC). The analyzed results indicate that: (1) The northern rainstromcloud cluster developedin the south of warm shear line on 850 hPa, and mergednear by shear lineon surface. At the same time, the southern MCC was merged by 3 meso-β-scale convective cloud clusters, which developed on the weather-scale shear lineon 700 hPa. In the process of MCC development and maturity stage, meso-α-scale convective cloud clusters moved east along the warm shear lineon 925 hPa, and intheprocess of MCC weakening, meso-α-scale convective cloud clusters moved south with the southward movementof subtropical high belt. (2) With the northwestward advance of the subtropical high during thesame rainstorm, MCC developed in the weak baroclinic environment of the 5 880 gpm region, and in the anticyclone north of high onupper levels; rainstorm cloud clusters tended to develop in the strong baroclinic environment of  5 840 gpm region, and in the the right of the upper jet stream entrance area. (3) As a large scale mesoscale convective system, MCC required more energy of high temperature and high humidity than general rainstorm cloud clustersinlower levers, and deeper vertical structure of high humidity, high energy tongue and high temperature. (4) The negative cloud-to-ground lightning appeared in the area which was influenced by the southern MCC and near the 5 880 gpm region; the positive cloud-to-ground lightning appeared in the area which was influenced by the northern rainstromcloud clusters and near the 5 840 gpm region. The time of the begin of lightning and the appearanceof the lightning peak was more earlierthan the time of rainfall and the appearance of the rain intensity peak in the backgroud of general rainstorm cloud clusters, comparing with the banckground of MCC. (5) The northern rainstorm cloud clusters developed in the area of high gradient of vertically integrated water content and on the front of water vapor; the southern MCC developed in the area of high value of total column water vapor, thesouth of the water vapor front. There is  ahead 36 h  to exactly forecast  the total column water vapor data of the rainstorm process on August 11, which showsa significant indication to rainstorm area.

Key words

Mesoscale convective / Rainstorm cloud clus / Cloud-to-ground ligh

Cite this article

Download Citations
MIAO Ai-Mei , DONG Chun-Qing , ZHANG Hong-Yu , SHEN Li-Wen , LI Miao. Comparative Analysis on MCC and Cloud Clusters of General Rainstorm during ‘0811’ Rainstorm Process. Plateau Meteorology. 2012, 31(3): 731-744

References

[1]Maddox R A. Meso2scale convective complexes[J]. Bulletion of the American Meteorological Society, 1980, 61: 1374-1387.
[2]Fang Zongyi. The preliminary study of medium2scale cloud clusters over the Changjiang basin in summer[J]. Advances in Atmospheric Sciences, 1985, 2(3): 334-340.
[3]李玉兰, 王倩熔, 郑新江, 等. 中国西南2华南地区中尺度对流复合体(MCC) 的研究[J]. 大气科学,1989, 13 (4): 417-422.
[4]项续康, 江吉喜. 中国南方地区的中尺度对流复合体[J]. 应用气象学报, 1995, 6(1): 1-17.
[5]郑永光, 陶祖钰, 王洪庆. 黄海及周边地区中尺度对流系统发生的环境条件[J]. 气象学报, 2002, 60(5): 613-619.
[6]吕艳彬, 郑永光, 李亚萍, 等. 华北平原中尺度对流复合体发生的环境和条件[J]. 应用气象学报, 2002, 13(4): 406-412.
[7]井喜, 陈见, 胡春娟, 等. 广西和贵州MCC 暴雨过程综合分析[J]. 高原气象, 2009, 28(2): 335-350.
[8]覃丹宇, 江吉喜, 方宗义, 等. MCC和一般暴雨云团发生发展的物理条件差异[J]. 应用气象学报, 2004, 15(5): 590-600.
[9]井喜, 李社宏, 屠妮妮, 等. 黄河中下游一次MCC和中-β尺度强对流云团相互作用暴雨过程综合分析[J]. 高原气象, 2011, 30(4): 913-928.
[10]袁美英, 李泽椿, 张小玲, 等. 中尺度对流系统与东北暴雨的关系[J]. 高原气象, 2011, 30(5): 1224-1231.
[11]苗爱梅, 武捷, 赵海英, 等. 低空急流与山西大暴雨的统计关系及流型配置[J]. 高原气象, 2010, 29(4): 939-946.
[12]范俊红, 王欣璞, 孟凯, 等. 一次MCC的云图特征及成因分析[J]. 高原气象, 2009, 28(6): 1388-1398.
[13]赵玉春, 王叶红. 高原涡诱生西南涡特大暴雨成因的个例研究[J]. 高原气象, 2010, 29(4): 819-831.
[14]黄楚慧, 顾清源, 李国平, 等. 一次高原低涡东移引发四川盆地暴雨的机制分析[J]. 高原气象, 2010, 29(4): 832-839.
[15]徐珺, 毕宝贵, 谌芸. 济南7.18大暴雨中尺度分析研究[J]. 高原气象, 2010, 29(5): 1218-1229.
[16]吴海英, 曾明剑, 尹东屏, 等. 一次苏皖特大暴雨过程中边界层急流结构演变特征和作用分析[J]. 高原气象, 2010, 29(6): 1431-1440.
[17]王丽荣, 刘黎平, 王立荣, 等. 一次局地短时大暴雨中-γ尺度分析[J]. 高原气象, 2011, 30(1): 217-225.
[18]曹晓岗, 王慧, 邹兰军, 等. 上海\!010805\"特大暴雨与\!080825\"大暴雨对比分析[J]. 高原气象, 2011, 30(3): 739-748.
[19]赵大军, 江玉华, 李莹. 一次西南低涡暴雨过程的诊断分析与数值模拟[J]. 高原气象, 2011, 30(5): 1158-1169.
[20]李青春, 苗世光, 郑祚芳, 等. 北京局地暴雨过程中近地层辐合线的形成与作用[J]. 高原气象, 2011, 30(5): 1232-1242.
PDF(2222 KB)

1550

Accesses

0

Citation

Detail

Sections
Recommended

/