Please wait a minute...
Adv search
Plateau Meteorology  2019, Vol. 38 Issue (2): 227-236    DOI: 10.7522/j.issn.1000-0534.2018.00080
    
Characteristics of Atmospheric Water Vapor over the Qinghai-Tibetan Plateau in Summer with Global Warming
CHANG Shuting, LIU Yuzhi, HUA Shan, JIA Rui
Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, Lanzhou University, Lanzhou 730000, Gansu, China
Download:  HTML  PDF (9792KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The Qinghai-Tibetan Plateau (QTP), which is aptly called as the "Asian water tower", acknowledged as the water source of the rest region in China, may profoundly have an significant impact on the regional and global atmospheric water vapor cycle, climate change and incidents of drought, disastrous weather and climate evolution in China and of the world, as a whole. In this paper, combined with the reanalysis data of ERA-Interim, MERRA2 (second Modern-Era Retrospective analysis for Research and Applications), JRA-55 (Japanese 55-year Reanalysis), and the GLDAS-2. 0 (Global Land surface Data Asimilation System), the precipitation and temperature daily grid data from CMA (China Meteorological Administration) were used to investigate the characteristics of spacial distribution and variation tendency of precipitation, temperature, atmospheric water vapor, and the atmospheric water vapor transport in summer over the QTP in summer during the period of 1979-2010 in this study. The results showed that the surface temperature over the QTP had increasing trend while the precipitation showed a decreasing trend during the period of 1979-1998. Otherwise, during the period of global warming deceleration (1999-2010), the surface temperature and the precipitation showed a more significant increasing trend than those during the period of 1979-1998. The atmospheric water vapor over the QTP showed an increasing trend during the period of 1979-2010. On the contrary, based on the further analysis, the inward transport of atmospheric water vapor showed a decreasing trend year by year. Especially, after the year of 1998, due to the sharp weakening of the intensity of southwest monsoon, the net inward atmospheric water vapor transport was reduced more significantly in this period. The results indicated that the surface evapotranspiration over the plateau showed an increasing trend significantly, which may be a major cause of the increased atmospheric water vapor over the QTP.
Key words:  Global warming      Qinghai-Tibetan Plateau (QTP)      atmosphere water vapor      net water vapor transport      surface evapotranspiration     
Received:  20 March 2018      Published:  22 April 2019
ZTFLH:  P467  

Cite this article: 

CHANG Shuting, LIU Yuzhi, HUA Shan, JIA Rui. Characteristics of Atmospheric Water Vapor over the Qinghai-Tibetan Plateau in Summer with Global Warming. Plateau Meteorology, 2019, 38(2): 227-236.

URL: 

http://www.gyqx.ac.cn/EN/10.7522/j.issn.1000-0534.2018.00080     OR     http://www.gyqx.ac.cn/EN/Y2019/V38/I2/227

Chen B, Xu X, Yang S, et al, 2012. On the origin and destination of atmospheric moisture and air mass over the Tibetan Plateau[J]. Theoretical & Applied Climatology, 110 (3):423-435. DOI:10.1007/s00704-012-0641-y.
Drumond A, Nieto R, Gimeno L, 2011. Sources of moisture for China and their variations during drier and wetter conditions in 2000-2004:a Lagrangian approach[J]. Climate Research, 50:215-225. DOI:10.3354/cr01043.
Feng L, Zhou T, 2012. Water vapor transport for summer precipitation over the Tibetan Plateau:Multidata set analysis[J]. Journal of Geophysical Research Atmospheres, 117 (D20):20114. DOI:10.1029/2011JD017012.
Hall A, Manabe S, 1997. The role of water vapor feedback in unperturbed climate variability and global warming[J]. Journal of Climate, 12 (8):2327-2346. DOI:10.1175/1520-0442 (1999)012<2327:TROWVF>2.0. CO; 2.
IPCC, 2013. Climate Change 2013:The physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, U. K.
Lin H, You Q, Zhang Y, et al, 2016. Impact of large scale circulation on the water vapour balance of the Tibetan Plateau in summer[J]. International Journal of Climatology, 36 (13):4213-4221. DOI:10.1002/joc. 4626.
Lu N, Qin J, Gao Y, et al, 2015. Trends and variability in atmospheric precipitable water over the Tibetan Plateau for 2000-2010[J]. International Journal of Climatology, 35 (7):1394-1404. DOI:10.1002/joc. 4064.
Simmonds I, Bi D, Hope P, 1999. Atmospheric water vapor fflux and its association with rainfall over China in summer[J]. Journal of Climate, 12:1353-1367.
Solomon S, Rosenlof K H, Portmann R W, et al, 2010. Contributions of stratospheric water vapor to decadal changes in the rate of global warming[J]. Science, 327 (5970):1219-1223. DOI:10.1126/science. 1182488.
Song J H, Kang H S, Younghwa B, et al, 2010. Effects of the Tibetan Plateau on the Asian summer monsoon:a numerical case study using a regional climate model[J]. International Journal of Climatology, 30 (5):743-759. DOI:10.1002/joc. 1906.
Sugimoto S, Ueno K, Sha W, 2008. Transportation of water vapor into the Tibetan Plateau in the case of a passing synoptic-scale trough[J]. Journal of Meteorological Japan, 86 (6):935-949. DOI:10.2151/jmsj. 86.935.
Wang J, Yang Y, Xu X, et al, 2003. A monitoring study of the 1998 rainstorm along the Yangtze River of China by using TIPEX data[J]. Advances in Atmospheric Sciences, 20 (3):425-436. DOI:10.1007/BF02690800.
Wang W, Cui W, Wang X, et al, 2016. Evaluation of GLDAS-1 and GLDAS-2 forcing data and Noah model simulations over China at monthly scale[J]. Journal of Hydrometeorology, 17(11).
Xie H, Zhu X, 2013. Reference evapotranspiration trends and their sensitivity to climatic change on the Tibetan Plateau(1970-2009)[J]. Journal of Hydrology, 27 (25):3685-3693. DOI:10.1002/hyp. 9487.
You Q, Jiang Z, Bao Y, et al, 2016. Trends in upper tropospheric water vapour over the Tibetan Plateau from remote sensing[J]. International Journal of Climatology, 36. DOI:10.1002/joc. 4674.
Zhao T, Wang J, Dai A, 2015. Evaluation of atmospheric precipitable water from reanalysis products using homogenized radiosonde observations over China[J]. Journal of Geophysical Research Atmospheres, 120(20):10703-10727. DOI:10.1002/2015JD023906.
Zhao T, Dai A, Wang J, 2012. Trends in tropospheric humidity from 1970 to 2008 over China from a homogenized radiosonde dataset[J]. Journal of Climate, 25(13):4549-4567. DOI:10.1175/JCLI-D-11-00557.1.
曹丽青, 余锦华, 葛朝霞, 2005. 华北地区大气水汽含量特征及其变化趋势[J]. 水科学进展, 16 (3):439-443. DOI:10.3321/j. issn:1001-6791.2005.03.022.
杜军, 2001. 西藏高原近40年的气温变化[J]. 地理学报, 56(6):682-690. DOI:10.3321/j. issn:0375-5444.2001.06.007.
丁一汇, 孙颖, 刘芸芸, 等, 2013. 亚洲夏季风的年际和年代际变化及其未来预测[J]. 大气科学, DOI:37(2):253-280.10.3878/j. issn. 1006-9895.2012.12302.
解承莹, 李敏姣, 张雪芹, 2014. 近30a青藏高原夏季空中水资源时空变化特征及其成因[J], 自然资源学报, 29 (6):979-989. DOI:10.11849/zrzyxb. 2014.06.007.
解承莹, 李敏姣, 张雪芹, 等, 2015. 青藏高原南缘关键区夏季水汽输送特征及其与高原降水的关系[J]. 高原气象, 34 (2):327-337. DOI:10.7522/j. issn. 1000-0534.2014.00034.
敬文琪, 崔园园, 刘瑞霞, 等, 2017. 影响长江中下游夏季降水的青藏高原水汽抽吸作用和水汽路径的定量化研究[J]. 高原气象, 36(4):900-911. DOI:10.7522/j. issn. 1000-0534.2016.00084.
林厚博, 游庆龙, 焦洋, 等, 2016. 青藏高原及附近水汽输送对其夏季降水影响的分析[J]. 高原气象, 35 (2):309-317. DOI:10.7522/j. issn. 1000-0534.2014.00146.
陆渝蓉, 高国栋, 1984. 我国大气中平均水汽含量与水分平衡的特征[J]. 气象学报, 42 (3):45-54. DOI:10.11676/qxxb1984.035.
史玉光, 2014. 新疆降水与水汽的时空分布及变化研究[M]. 北京:气象出版社, 118-119.
王光谦, 李铁键, 李家叶, 等, 2016. 黄河流域源区与上中游空中水资源特征分析[J]. 人民黄河, 38 (10):79-82. DOI:10.3969/j. issn. 1000-1379.2016.10.016.
王可丽, 江灏, 赵红岩, 2006. 西风带与季风对中国西北地区的水汽输送. 水科学进展, 16(3):432-438. DOI:10.3321/j. issn:1001-6791.2005.03.021.
王霄, 巩远发, 岑思弦, 2009. 夏半年青藏高原"湿池"的水汽分布及水汽输送特征[J]. 地理学报, 64(5):601-608. DOI:10.3321/j. issn:0375-5444.2009.05.009.
谢启玉, 巩远发, 杨蓉, 等, 2015. 基于ERA-Interim资料分析青藏高原"湿池"变化特征[J]. 自然资源学报, 30(7):1163-1171.
谢欣汝, 保云涛, 孟宪红, 2018. 基于多源数据的青藏高原夏季降水与水汽输送的联系[J]. 高原气象, 37(1):78-92. DOI:10.7522/j. issn. 1000-0534.2017.00030.
荀学义, 胡泽勇, 孙俊, 等, 2011. 高原地区ERA40与NCEPI再分析资料对比分析[J]. 气象科技, 39(4):392-400. DOI:10.3969/j. issn. 1671-6345.2011.04.002.
张强, 张杰, 孙国武, 等, 2007. 祁连山山区空中水汽分布特征研究[J]. 气象学报, 65 (4):633-643. DOI:10.3321/j. issn:0577-6619.2007.04.015.
赵洪宇, 张雪芹, 解承莹, 2017. 多源水汽再分析资料在青藏高原的适用性评估[J]. 干旱区研究, 34(2):300-308. DOI:10.13866/j. azr. 2017.02.08.
周顺武, 吴萍, 王传辉, 等, 2011. 青藏高原夏季上空水汽含量演变特征及其与降水的关系[J]. 地理学报, 66 (11):1466-1478. DOI:10.11821/xb201111003.
周长艳, 邓梦雨, 齐冬梅, 2017. 青藏高原湿池的气候特征及其变化[J]. 高原气象, 36(2):294-306. DOI:10.7522/j. issn. 1000-0534.2016.00042.
[1] . On the Research Progress of the Subtropical EastAsian Monsoon and Related Problem[J]. PLATEAU METEOROLOGY, 2008, 27(增刊): 1 -7 .
[2] . [J]. PLATEAU METEOROLOGY, 2009, 28(5): 1140 -1148 .
[3] . [J]. PLATEAU METEOROLOGY, 2010, 29(3): 737 -743 .
[4] . [J]. PLATEAU METEOROLOGY, 2010, 29(1): 109 -114 .
[5] . Analysis on Cloud Vertical Structure over China andIts Neighborhood Based on CloudSat Data[J]. PLATEAU METEOROLOGY, 2011, 30(1): 38 -52 .
[6] . Variational Characteristics of Surface Solar Radiation and AssociatedMeteorological Elements over Ordos Plateau in Recent 50 Years[J]. PLATEAU METEOROLOGY, 2009, 28(4): 786 -794 .
[7] . An Improvement of Polarimetric Radar Rainfall Estimates[J]. PLATEAU METEOROLOGY, 2011, 30(2): 498 -507 .
[8] . Characteristic  Analyses on Hydrological and Related Meteorological
Factors on the North Slope of Mount Qomolangma
[J]. PLATEAU METEOROLOGY, 2013, 32(1): 31 -37 .
[9] . Effect of the Cloud-Top Height on Back-Scattered UltravioletRadiation Measuring Total Ozone[J]. PLATEAU METEOROLOGY, 2009, 28(3): 647 -651 .
[10] HOU Wei, ZHANG Da-Quan, QIAN Zhong-Hua, FENG Guo-Lin. Research about the Extreme High Temperature Event and Its Composite
Index Based on Stochastic Re-Sort Detrended Fluctuation Analysis
[J]. PLATEAU METEOROLOGY, 2012, 31(2): 329 -341 .