Please wait a minute...
Adv search
  2015, Vol. 34 Issue (2): 389-400    DOI: 10.7522/j.issn.1000-0534.2013.00206
    
Comparison of Simulations on Winter Sounding Profiles in PBL in East China between WRF and MM5
SHI Chun'e1, LI Yaosun2,3, YANG Jun3, DENG Xueliang1, YANG Yuanjian1
1. Anhui Institute of Meteorological Sciences, Key Laboratory for Atmospheric Sciences & Remote Sensing of Anhui Provirve, Hefei 230031, China;
2. Yunnan Meteorological Observatory, Kunming 210030, China;
3. School of Atmospheric Physics and Atmospheric Environment, Nanjing University of Information Science & Technology, Nanjing 210044, China
Download:  PDF (11266KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  MM5 and WRF were run daily for December of 2006 and December of 2007 and the results at ground level and in PBL were assessed and compared by calculating a set of common used statistics measures using the ground-level observations of the China Meteorology Agency routine meteorological network, and the high resolution sounding data at observatories of Nanjing and Anqing. Generally, the simulated ground level temperature and humidity by both MM5 and WRF were reliable, but the simulated wind speed was a little worse. Both models performed better during daytime than during nighttime. In addition, the validation results showed evident regional distribution, e.g., the results changed worse from east to west for temperature, from southeast to northwest for humidity, from plain area to hill and mountain areas for wind speed. According to correlation coefficient (R) and mean absolute error (MAE), WRF performed better than MM5 for temperature and humidity at the ground level. Taking Nanjing and Anqing for examples, the modeled sounding in PBL at both 08:00 and 20:00 were acceptable, except for the wind speed below 150 m in Nanjing. The results at 20:00 were better than those at 08:00, and improved with increasing height for both models. In general, WRF performed better for temperature and humidity, while MM5 performed better for wind speed. Both models could reproduce the near surface temperature inversion, with overestimated the occurring frequency. For the near surface temperature inversion, MM5 outperformed WRF for the frequency, while WRF outperformed MM5 for the thickness and intensity.
Key words:  Planetary boundary layer      MM5 model      WRF model      Model comparison     
Received:  24 May 2013      Published:  24 April 2015
P404  

Cite this article: 

SHI Chun'e, LI Yaosun, YANG Jun, DENG Xueliang, YANG Yuanjian. Comparison of Simulations on Winter Sounding Profiles in PBL in East China between WRF and MM5. , 2015, 34(2): 389-400.

URL: 

http://www.gyqx.ac.cn/EN/10.7522/j.issn.1000-0534.2013.00206     OR     http://www.gyqx.ac.cn/EN/Y2015/V34/I2/389

[1] 吴彬贵, 张宏升, 汪靖, 等. 一次持续性浓雾天气过程的水汽输送及逆温特征分析[J]. 高原气象, 2009, 28(2): 258-267.
[2] 刘熙明, 胡非, 邹海波, 等. 北京地区一次典型大雾天气过程的边界层特征分析[J]. 高原气象, 2010, 29(5): 1174-1182.
[3] 程麟生, 彭新东. 黑河地区行星边界层平均结构演变的三维数值模拟[J]. 高原气象, 1992, 11(4): 389-399.
[4] 李子华, 石春娥, 曹必铭. 重庆市区冬季晴天局地环流结构[J]. 南京气象学院学报, 1994, 17(2): 232-237.
[5] 石春娥, 曹必铭, 李子华, 等. 复杂地形上三维局地环流的模拟研究[J]. 南京气象学院学报, 1996, 19(3): 320-328.
[6] 安兴琴, 吕世华. 金塔绿洲大气边界层特征的数值模拟研究[J]. 高原气象, 2004, 23(2): 200-208.
[7] 安兴琴, 吕世华, 陈玉春. 河西绿洲效应的数值模拟研究[J]. 高原气象, 2004, 23(2): 208-215.
[8] 文小航, 吕世华, 孟宪红, 等. WRF模式对金塔绿洲效应的数值模拟[J]. 高原气象, 2010, 29(5): 1163-1173.
[9] Zhou Binbin, Ferrier B S. Asymptotic analysis of equilibrium in radiation fog[J]. J Appl Meteor Climatol, 2008, 47: 1704-1722.
[10] Zhou Binbin, Du Jun. Fog prediction from a multi-model mesoscale ensemble prediction system[J]. Wea Forecasting, 2010, 25: 303-322.
[11] Zhou Binbin, Du Jun, Gultepe I, et al. Forecast of low visibility and fog from NCEP: Current status and efforts[J]. Pure Appl Geophys, 2012, 169(5-6): 895-909.
[12] Burrows W R, Toth G. Automated fog and stratus forecasts from the Canadian RDPS operational NWP model[C]. 24th Conference on Weather and Forecasting, AMS, Seattle, Washington, USA, January 23-27, 2011.
[13] Muller M D, Schmutz C, Parlow E. A one-dimensional ensemble forecast and assimilation system for fog prediction[J]. Pure Appl Geophys, 2007, 164: 1241-1264.
[14] Shi C, Wang L, Zhang H, et al. Fog simulations based on multi-model system: A feasibility study[J]. Pure Appl Geophys, 2012, 269(5-6): 941-960.
[15] Kim C K, Yum S S. A numerical study of sea-fog formation over cold sea surface using a one-dimensional turbulence model coupled with the weather research and forecasting model[J]. Bound-Layer Meteor, 2012, 143(3): 481-505.
[16] 石春娥, 吴照宪, 张浩, 等. MM5与MM5-PAFOG区域雾预报效果评估比较[J]. 高原气象, 2013, 32(5): 1349-1359, doi: 10.7522/j.issn.1000-0534.2012.00126.
[17] 石春娥, 邓学良, 杨元建, 等. 2013年1月安徽持续性霾天气成因分析[J]. 气候与环境研究, 2014, 19(2): 227-236.
[18] 程兴宏, 徐祥德, 丁国安, 等. MM5/WRF气象场模拟差异对CMAQ空气质量预报效果的影响[J]. 环境科学研究, 2009, 12: 1411-1419.
[19] 周昆, 郝元甲, 姚晨, 等. 6种数值模式在安徽区域天气预报中的检验[J]. 气象科学, 2010, 30 (6): 801-805.
[20] 刘振鑫, 刘树华, 胡非, 等. MM5和WRF对北京地区低层大气局地环流模拟能力的对比研究[J]. 中国科学: 地球科学, 2012, 42: 301-312.
[21] 李耀孙, 石春娥, 杨军, 等. 东部地区冬季模式边界层探空效果评估[J]. 高原气象, 2012, 31(6): 1690-1703.
[22] 陈子通, 闫敬华, 苏耀墀. 模式探空的评估分析及其在强对流天气预报中的应用研究[J]. 大气科学, 2006, 30(2): 235-247.
[23] 李佳英, 俞小鼎, 王迎春. 用探空资料检验中尺度数值模式对强对流天气的诊断分析能力[J]. 气象, 2006, 32(7): 13-17.
[24] Otte. The impact of nudging in the meteorological model for retrospective air quality simulations. Part I: evaluation against National Observation Networks[J]. J Appl Meteor Climatol, 2008, 47: 1853-1867.
[25] Lu R, Turco R P, Jacobson M Z. An integrated air pollution modeling system for urban and regional scales: 2. Simulation for SCAQS 1987[J]. J Geophys Res, 1997, 102(5): 6081-6098.
[26] Miao J F, Chen D, Wyser K, et al. Evaluation of MM5 mesoscale model at local scale for air quality applications over the Swedish west coast: Influence of PBL and LSM parameterizations[J]. Meteor Atmos Phys, 2008, 99: 77-103.
[27] 杨元建, 石涛, 唐为安, 等. 气象台站环境的卫星遥感调查与评估-以安徽代表气象站为例[J]. 遥感技术与应用, 2011, 26(6): 791-797.
[28] 李子华, 刘端阳, 杨军, 等. 南京市冬季雾的物理化学特征[J]. 气象学报, 2011, 69(4): 706-718.
[1] . On the Research Progress of the Subtropical EastAsian Monsoon and Related Problem[J]. PLATEAU METEOROLOGY, 2008, 27(增刊): 1 -7 .
[2] . [J]. PLATEAU METEOROLOGY, 2010, 29(3): 737 -743 .
[3] . [J]. PLATEAU METEOROLOGY, 2010, 29(1): 109 -114 .
[4] . Effect of the Cloud-Top Height on Back-Scattered UltravioletRadiation Measuring Total Ozone[J]. PLATEAU METEOROLOGY, 2009, 28(3): 647 -651 .
[5] . [J]. PLATEAU METEOROLOGY, 2010, 29(3): 755 -762 .
[6] . Analysis on Cloud Vertical Structure over China andIts Neighborhood Based on CloudSat Data[J]. PLATEAU METEOROLOGY, 2011, 30(1): 38 -52 .
[7] . [J]. PLATEAU METEOROLOGY, 2010, 29(5): 1261 -1269 .
[8] . Characteristic  Analyses on Hydrological and Related Meteorological
Factors on the North Slope of Mount Qomolangma
[J]. PLATEAU METEOROLOGY, 2013, 32(1): 31 -37 .
[9] HOU Wei, ZHANG Da-Quan, QIAN Zhong-Hua, FENG Guo-Lin. Research about the Extreme High Temperature Event and Its Composite
Index Based on Stochastic Re-Sort Detrended Fluctuation Analysis
[J]. PLATEAU METEOROLOGY, 2012, 31(2): 329 -341 .
[10] . Optimization and Test of Soil Thermal Conductivity Parameterization
Schemes in Northern Qinghai-Xizang Plateau
[J]. PLATEAU METEOROLOGY, 2013, 32(3): 646 -653 .