Please wait a minute...
Adv search
  2015, Vol. 34 Issue (2): 470-477    DOI: 10.7522/j.issn.1000-0534.2014.00003
    
Analysis of the Available Solar Energy Resources in Turpan
SHEN Yanbo1,2, CHANG Rui1,2, DU Jiang3, CHENG Xinghong1,2
1. Public Meteorological Service Center of China Meteorological Administration, Beijing 100081, China;
2. Wind and Solar Energy Resources Center of China Meteorological Administration, Beijing 100081, China;
3. Turpan Meteorological Administration of Xinjiang Uighur Autonomous Region, Turpan 838000, China
Download:  PDF (3412KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Using the measured data for a year of solar energy test station in Turpan combined with observation data of the weather station over the same period, from three aspects of solar radiation on inclined surface, direct normal irradiation and diffuse horizontal radiation to analyze the available solar energy resources and their variation characteristics and the possible causes in Turpan area. The results show: the annual irradiation on inclined plane with optimal angle is 1.4% higher than the inclined surface with latitude angle, and 23.16% higher than the horizontal plane. And the two groups of relative difference are diametrically opposed in seasonal changes, the relevant conclusions can be used for analyzing and evaluating the solar energy resources of the fixed photovoltaic power plant. The annual direct normal irradiation is 17% lower than the global horizontal irradiation, the relative difference in winter and spring is larger than that in summer and autumn, and the conclusions can be used for analyzing and evaluating the solar energy resource of thermal power generation. The annual diffuse horizontal radiation takes 49% of the global horizontal irradiation, the diffuse ratio and annual variation of the solar elevation angle are two major factors that influence the changes of two solar energy resources; in addition, the annual global horizontal irradiation might decrease 8% by the shelter of the buildings surrounding the weather station. Considering the climate average state, the measured annual global horizontal irradiation in this paper is 8% lower than the average value in recent 30 years. This research is trying to explain the connections and differences between the ‘available resources’ of solar power generation project and ‘radiation elements’ in the meteorological field, so as to provide references for the solar power plant to carry out scientific and reasonable resources measuring and evaluating works.
Key words:  Solar energy resource      Solar radiation on inclined surface      Direct normal irradiation      Diffuse ratio      Turpan     
Received:  01 July 2013      Published:  24 April 2015
P49  

Cite this article: 

SHEN Yanbo, CHANG Rui, DU Jiang, CHENG Xinghong. Analysis of the Available Solar Energy Resources in Turpan. , 2015, 34(2): 470-477.

URL: 

http://www.gyqx.ac.cn/EN/10.7522/j.issn.1000-0534.2014.00003     OR     http://www.gyqx.ac.cn/EN/Y2015/V34/I2/470

[1] 国家能源局. 太阳能发电"十二五"规划[EB/OL]. http://www.gov.cn/zwgk/2012-09/13/content_2223540.htm, 2012年7月.
[2] 郑有飞, 尹炤寅, 吴荣军, 等. 1960-2005年京津冀地区地表太阳辐射变化及成因分析[J]. 高原气象, 2012, 31(2): 436-445.
[3] 辛渝, 赵逸舟, 毛炜峄, 等. 新疆太阳总辐射资料的均一性检验与气候学估算式的再探讨[J]. 高原气象, 2011, 30(4): 878-889.
[4] 陈仁升, 康尔泗, 李新, 等. 任意地形实际天气条件下小时入射短波辐射模型——以黑河流域为例[J]. 中国沙漠, 2006, 26(5): 773-778.
[5] 彭继达, 程兴宏, 孙治安, 等. 两种不同初始场对太阳辐射模拟效果的影响[J]. 高原气象, 2014, 33(5): 1352-1362, doi: 10.7522/j.issn.1000-0534.2013.00098.
[6] 刘俊峰, 陈仁升, 阳勇, 等. 实际地形下30 min太阳辐射模拟及误差分析——以祁连山马粪沟流域为例[J]. 高原气象, 2011, 30(6): 1647-1652.
[7] 杨金焕. 太阳能光伏发电应用技术[M]. 北京: 电子工业出版社, 2009.
[8] 王炳忠, 丁蕾, 杨云. 关于光电型总日射表光谱性能的研究[J]. 太阳能学报, 2012, 33(12): 2122-2126.
[9] 王炳忠, 莫月琴, 杨云. 现代气象辐射测量技术[M]. 北京: 气象出版社, 2008.
[10] Klien S A, Theilacker J C. An algorithm for calculating monthly-average radiation on inclined surfaces[J]. Journal of Solar Energy Engineering, 1981, 103: 28-33.
[11] 杨金焕. 固定式光伏方阵最佳倾角的分析[J]. 太阳能学报, 1992, 13(1): 86-92.
[12] 王炳忠, 申彦波. 从资源角度对太阳能装置最佳倾角的讨论[J]. 太阳能, 2010(7): 17-20.
[1] . On the Research Progress of the Subtropical EastAsian Monsoon and Related Problem[J]. PLATEAU METEOROLOGY, 2008, 27(增刊): 1 -7 .
[2] . [J]. PLATEAU METEOROLOGY, 2010, 29(3): 737 -743 .
[3] . [J]. PLATEAU METEOROLOGY, 2010, 29(1): 109 -114 .
[4] . Effect of the Cloud-Top Height on Back-Scattered UltravioletRadiation Measuring Total Ozone[J]. PLATEAU METEOROLOGY, 2009, 28(3): 647 -651 .
[5] . [J]. PLATEAU METEOROLOGY, 2010, 29(3): 755 -762 .
[6] . Analysis on Cloud Vertical Structure over China andIts Neighborhood Based on CloudSat Data[J]. PLATEAU METEOROLOGY, 2011, 30(1): 38 -52 .
[7] . [J]. PLATEAU METEOROLOGY, 2010, 29(5): 1261 -1269 .
[8] . Characteristic  Analyses on Hydrological and Related Meteorological
Factors on the North Slope of Mount Qomolangma
[J]. PLATEAU METEOROLOGY, 2013, 32(1): 31 -37 .
[9] HOU Wei, ZHANG Da-Quan, QIAN Zhong-Hua, FENG Guo-Lin. Research about the Extreme High Temperature Event and Its Composite
Index Based on Stochastic Re-Sort Detrended Fluctuation Analysis
[J]. PLATEAU METEOROLOGY, 2012, 31(2): 329 -341 .
[10] LIU Mei, ZHANG Bei, YU Jian-Wei, HU Luo-Lin, GAO 苹. Characteristics of Upper Energy Transport and Coupling of
Meteorology  Elements on Upper and Lower Levels during
Rainstorm Process in Meiyu Season of Jiangsu
[J]. PLATEAU METEOROLOGY, 2012, 31(3): 777 -787 .