Please wait a minute...
Adv search
  2015, Vol. 34 Issue (2): 546-555    DOI: 10.7522/j.issn.1000-0534.2014.00006
    
Analyzing a Heavy Rainfall Process Based on Dual-Doppler Radar and Lightning Data
YANG Lili1, YANG Yi1, ZHANG Tinglong2, WANG Ying1
1. Key Laboratory of Arid Climatic Changing and Reducing Disaster of Gansu Province, College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China;
2. Key Laboratory of Land Surface Process and Climate Change in Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou 730000, China
Download:  PDF (5701KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  In order tofurther understand the application of Doppler radar data in mesoscale weather system as well as thedynamical structureof precipitationsystem, a large-scaledand more accurate inversion resultis aimed to get, basing on the newly-proposed fuzzy logical algorithm of cloud classification and the two-step variational method which is applied to dual-Doppler radar. The data come from Dual-Doppler Radar's (S-band) observation in Hefei and Fuyang, Anhui province. A heavy rainfall processoccurred in Anhui Province on 7~10 June in 2010 is analyzed by utilizing vertical accumulative total liquid water content(VIL), rainfalland distribution of lightning. The results show that this persistentrainfall is associated with the wind fieldswhichcantains a convergence in lower layers and a divergence in higher layers, a cyclonic wind rotation and a wind shear line. This rainfall process which is based on stratiformis shown to be a hybridcumuluscloudprecipitation. Besides, the stratiform lightning is few during this rainfall and mainly focuses on the negative ground flashes. The heavy rain occurred 20 minutes or so after lightning. The value of VIL in this heavy rainfall is small, which is less than 3 kg·m-2. There are strong relationships among cloudclassification, the area of rain, VIL and Radar's echo.
Key words:  Rainfall      Dual-Doppler radar      Retrieve      Cloud classification      Lightning     
Received:  20 May 2013      Published:  24 April 2015
P426.6  

Cite this article: 

YANG Lili, YANG Yi, ZHANG Tinglong, WANG Ying. Analyzing a Heavy Rainfall Process Based on Dual-Doppler Radar and Lightning Data. , 2015, 34(2): 546-555.

URL: 

http://www.gyqx.ac.cn/EN/10.7522/j.issn.1000-0534.2014.00006     OR     http://www.gyqx.ac.cn/EN/Y2015/V34/I2/546

[1] 俞小鼎, 郑媛媛, 张爱民, 等. 安徽一次强烈龙卷的多普勒天气雷达分析[J]. 高原气象, 2006, 25(5): 914-924.
[2] 姚叶青, 俞小鼎, 张义军, 等. 一次典型飑线过程多普勒天气雷达资料分析[J]. 高原气象, 2008, 27(2): 373-381.
[3] Yang Y, Qiu C J, Gong J D. Physical initialization applied in WRF-Var for assimilation of Doppler radar data[J]. Geophys Res Lett, 2006, 33(22): L22807.
[4] Yang Yi, Qiu Changjian, Gong Jiaodong, et al. The WRF 3DVar system combinedwith physical initialization for assimilation of Doppler radar data[J]. Acta Meteor Sini, 2009, 23(2):129-139.
[5] 周振波, 闵锦忠, 彭霞云, 等. 单多普勒雷达风场反演的扩展 VAP 方法 (Ⅰ): 方法与对比试验[J]. 高原气象, 2006, 25(3): 516-524.
[6] Sun J, Flicker D W, Lilly D K. Recovery of three-dimensional wind and temperature fields from simulated Doppler radar data[J]. Atmos Sci, 1991, 48: 876-890.
[7] Qiu Chongjian, Xu Qin. A simple adjoint method of wind analysis for single-Doppler data[J]. Atmos Oceanic Technol, 1992, 9: 588-598.
[8] Laroche S, Zawadzki I. A variational analysis method for retrieval of three-dimensional wind field from single-Doppler radar data[J]. Atmos Sci, 1994, 51: 2664-2682.
[9] Qiu Chongjian, Xu Qin. Least squares retrieval of microburst winds from single Doppler radar data[J]. Mon Wea Rev, 1996, 124: 1132-1144.
[10] Nissen R, Hudak D, Laroche S, et al. 3D wind field retrieval applied to snow events using Doppler radar[J]. Atmos Oceanic Technol, 2001, 18: 348-362.
[11] Xu Qin, Qiu Chongjian, Gu Hongdao, et al. Simple adjoint retrievals of microburst winds from single-Doppler radar data[J]. Mon Wea Rev, 1995, 123(6): 1822-1833.
[12] Xu Q, Gu H D, Yang S. Simple adjoint method for three-dimensional wind retrievals from single-Doppler data[J]. Quart Roy Meteor Soc, 2001, 127: 1053-1067.
[13] Gao J D, Xue M, Shapiro A, et al. Three-dimensional simple adjoint velocity retrievals from single-Doppler radar[J]. Atmos Oceanic Technol, 2001, 18: 26-38.
[14] Weygandt S, Shapiro A, Droegemeier K. Retrieval of model initial field from single-Doppler observations of a supercell thunderLstorm. Part I: Single-Doppler velocity retrieval[J]. Mon Wea Rev, 2002, 130: 433-453.
[15] Weygandt S, Shapiro A, Droegemeier K. Retrieval of model initial fields from single-Doppler observations of a supercell thunderstorm. Part II: Thermodynamic retrieval and numerical prediction[J]. Mon Wea Rev, 2002, 130: 454-476.
[16] Zhao K, Liu G Q, Ge W Z, et al. Retrieval of single-Doppler radar wind field by nonlinear approximation[J]. Adv Atmos Sci, 2003, 20(2): 195-204.
[17] Qiu C J, Shao A M, Liu S, et al. A two-step variational method for three-dimensional wind retrieval from single Doppler radar[J]. Meteor Atmos Phys, 2006, 91: 1-8.
[18] 段云霞, 邵爱梅, 杨毅. 利用双多普勒雷达资料对一次台风流场结构的分析[J]. 高原气象, 2010, 29(1): 187-196.
[19] 杨毅, 邱崇践, 龚建东, 等. 同化多普勒雷达风资料的两种方法比较[J]. 高原气象, 2007, 26(3): 547-555.
[20] 杨毅, 邱崇践, 龚建东, 等. 利用3维变分方法同化多普勒天气雷达资料的试验研究[J]. 气象科学, 2008, 28(2): 124-132.
[21] 周海光. 2008年8月1-2日滁州特大暴雨双多普勒雷达三维风场反演试验的初步结果[J]. 高原气象, 2009, 28(6): 1422-1433.
[22] Shao A M, Qiu C J, Liu L P. Kinematic structure of a heavy rain event from dual-Doppler radar observations[J]. Adv Atmos Sci, 2004, 21(4): 609-616.
[23] Ray P S, Ziegler C L, Bumgarner W, et al. Single- and multiple-Doppler radar observations of tornadic storms[J]. Mon Wea Rev, 1980, 108(10): 1607-1625.
[24] Armijo L. A theory for the determination of wind and precipitation velocities with Doppler radars[J]. Atmos Sci, 1969, 26(3): 570-573.
[25] Miller L J, Strauch R G. A dual-Doppler radar method for the determination of wind velocities within precipitation weather systems[J]. Remote Sensing Environ, 1974, 3(4): 219-235.
[26] 杨毅, 邱崇践. 利用多普勒雷达资料分析一次强降水过程的中尺度流场[J]. 高原气象, 2006, 25(5): 925-931.
[27] Geleyn J F, Hense A, Preuss H J. A comparison of model generated radiation fields with satellite measurements[J]. Beitr Phys Atmos, 1982, 55: 253-286.
[28] Welch R M, Wielicki B A. Stratocumulus cloud field reflected fluxes: The effect ofcloud shape[J]. Atmos Sci, 1984, 41(21): 3085-3103.
[29] 李子华, 周文贤, 章澄昌. 江淮地区梅雨锋降水回波特征[C]. 中国南方云物理学人工降水论文集. 北京: 气象出版社, 1986: 55-59.
[30] Houze R A. Observed structure of mesoscale convective systems and implications for large-scale heating[J]. Quart Roy Meteor Soc, 1989, 115: 425-461.
[31] Gamache J F, Houze R A. Mesoscale air motions associated with a tropical squall line[J]. Mon Wea Rev, 1982, 110: 118-135.
[32] Steiner M, Houze K A, Yuter S E. Climatological characterization of three-dimensional storm structure from operational radar and rain gauge data[J]. J Appl Meteor, 1995, 34: 1978-2007.
[33] Biggerstaff M I, Listemaa S A. An improved scheme for convective/stratiform echo classification using radar reflectivity[J]. J Appl Meteor, 2000, 39(12): 2129-2150.
[34] 肖艳姣, 刘黎平. 三维雷达反射率资料用于层状云和对流云的识别研究[J].大气科学, 2007, 31(4): 646-654.
[35] Yang Y, Chen X, Qi Y C. Classification of convective/stratiform echoes in radar reflectivity observations using a fuzzy logic algorithm[J]. Geophys Res Atmos, 2013, 118, doi: 10.1002/jgrd.50214.
[36] Barnes, Stanley L. A technique for maximizing details in numerical weather map analysis[J]. Appl Meteor, 1964, 3: 396-409.
[37] 肖艳姣, 马中元, 李中华. 改进的雷达回波顶高、垂直积分液态水含量及其密度算法[J]. 暴雨灾害, 2009, 28(3): 210-214.
[38] 高守亭, 孙建华, 崔晓鹏. 暴雨中尺度系统数值模拟与动力诊断研究[J]. 大气科学, 2008, 32(4): 854-866.
[39] 袁铁, 郄秀书. 卫星观测到的我国闪电活动的时空分布特征[J]. 高原气象, 2004, 23(4): 488-494.
[40] Goodman S J. Predicting thunderstorm evolution using ground-based lightningdetection networks[J]. NASA Tech Memo, 1990, TM-103521, 193.
[41] 俞小鼎, 周小刚, LemonL, 等. 强对流天气临近预报[Z]. 全国气象部门预报员轮训系列讲义, 2009: 176-177.
[42] 潘江, 张培昌. 利用垂直累积液态水估测降水[J]. 南京气象学院学报, 2000, 23(1): 87-92.
[43] 李南, 魏鸣, 姚叶青. 安徽闪电与雷达资料的相关分析以及机理初探[J]. 热带气象学报, 2006, 22(3): 265-272.
[1] . On the Research Progress of the Subtropical EastAsian Monsoon and Related Problem[J]. PLATEAU METEOROLOGY, 2008, 27(增刊): 1 -7 .
[2] . [J]. PLATEAU METEOROLOGY, 2010, 29(3): 737 -743 .
[3] . [J]. PLATEAU METEOROLOGY, 2010, 29(1): 109 -114 .
[4] . Effect of the Cloud-Top Height on Back-Scattered UltravioletRadiation Measuring Total Ozone[J]. PLATEAU METEOROLOGY, 2009, 28(3): 647 -651 .
[5] . [J]. PLATEAU METEOROLOGY, 2010, 29(3): 755 -762 .
[6] . Analysis on Cloud Vertical Structure over China andIts Neighborhood Based on CloudSat Data[J]. PLATEAU METEOROLOGY, 2011, 30(1): 38 -52 .
[7] . [J]. PLATEAU METEOROLOGY, 2010, 29(5): 1261 -1269 .
[8] . Characteristic  Analyses on Hydrological and Related Meteorological
Factors on the North Slope of Mount Qomolangma
[J]. PLATEAU METEOROLOGY, 2013, 32(1): 31 -37 .
[9] HOU Wei, ZHANG Da-Quan, QIAN Zhong-Hua, FENG Guo-Lin. Research about the Extreme High Temperature Event and Its Composite
Index Based on Stochastic Re-Sort Detrended Fluctuation Analysis
[J]. PLATEAU METEOROLOGY, 2012, 31(2): 329 -341 .
[10] . Effect of the Instrument Surface Heating on CO2 Flux from Open-Path
Eddy Covariance System at Linze Station
[J]. PLATEAU METEOROLOGY, 2013, 32(1): 65 -77 .