Please wait a minute...
Adv search
  2015, Vol. 34 Issue (2): 568-574    DOI: 10.7522/j.issn.1000-0534.2013.00185
    
Power Spectrum Data Quality Control Method of Wind Profile Radar Based on Fuzzy Logic
DONG Debao1, ZHANG Tongming1, WENG Ningquan2, DOU Weiming1
1. Meteorological Observation Technology Support Centre of Anhui, Hefei 230031, China;
2. Key Laboratory of Atmospheric Composition and Optical Radiation, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei 230031, China
Download:  PDF (4914KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  With the wind profile radar network observing systems to promote the construction, quality control is to improve an important part of wind profiler radar observations effectiveness of the application. Generating mechanism、signal and data processing are described in the wind profile radar echo, wind profiler radar power spectrum characteristics of the turbulence echo and interference echo is discussed, the amount of characteristics of power spectrum is given, quality control methods based on fuzzy logic to extract the atmospheric turbulence echo information to improve the doppler velocity estimation accuracy are proposed. In order to inspection the reliability of quality control methods, a case study in the quality control of east beam at 10:42:16 on 4 and west beam at 10:36:20(Beijing Time) on 8 June 2008. The results showed that data availability of treatment observations is better.
Key words:  Doppler power spectrum      Fuzzy logic      Quality control      Wind profile     
Received:  20 May 2013      Published:  24 April 2015
P412.2  

Cite this article: 

DONG Debao, ZHANG Tongming, WENG Ningquan, DOU Weiming. Power Spectrum Data Quality Control Method of Wind Profile Radar Based on Fuzzy Logic. , 2015, 34(2): 568-574.

URL: 

http://www.gyqx.ac.cn/EN/10.7522/j.issn.1000-0534.2013.00185     OR     http://www.gyqx.ac.cn/EN/Y2015/V34/I2/568

[1] Jordan J R, Lataitis R J, Carter D A. Removing gound and intermittent clutter contamination from wind profiler signals using wavelet transforms[J]. J Atmos Ocean Technol, 1997, 14(12): 1280-1295.
[2] Thomas N. Analysis and quality control of profiler data using optimum interpolation[J]. J Atmos Ocean Technol, 2000, 17(5): 651-655.
[3] Robert S, Susan K A. Improving wind profiler–measured winds using coplanar spectral averaging[J]. J Atmos Ocean Technol, 2004, 21(11): 1671-1678.
[4] 胡明宝. 风廓线雷达数据处理与应用研究[D]. 南京: 南京信息工程大学, 2012: 1-10.
[5] 黄治勇, 周志敏, 徐桂荣, 等. 风廓线雷达和地基微波辐射计在冰雹天气监测中的应用[J]. 高原气象, 2015, 34(1): 269-278, doi: 10.7522/j.issn.1000-0534.2013.00130.
[6] 吴志根, 沈利峰. 边界层风廓线仪应用中存在的若干问题[J]. 高原气象, 2010, 29(3): 801-809.
[7] 何平. 相控阵风廓线雷达[M]. 北京: 气象出版社, 2006: 3-80.
[8] 中国气象局.中华人民共和国气象行业标准(QX/T 78-2007): 风廓线雷达信号处理规范[S]. 北京: 中国气象局发布, 2007.
[9] 黄钰, 阮征, 葛润生, 等. 风廓线雷达探测零度层亮带的试验研究[J]. 高原气象, 2011, 30(5): 1376-1383.
[10] 朱斌, 高仲辉. 风廓线雷达探测系统中的谱数据处理[J]. 现代雷达, 2003, 25(11): 21-23.
[11] 崔哲虎, 程明虎, 乌秋力, 等. 快速中值滤波方法及其在Doppler雷达资料处理中的应用[J]. 高原气象, 2005, 24(5): 727-729.
[12] Larry B, Robert C, Goodrich K, et al. A fuzzy logic method for improved moment estimation from doppler spectra[J]. J Atmos Ocean Technol, 1998, 15(12): 1287-1300.
[13] Morse C S, Goodrich R K, Cornman L B. The NIMA method for improved moment estimation from doppler spectra[J]. J Atmos Ocean Technol, 2002, 19(3): 284-286.
[14] Bianco L, Wilczak J M. Convective boundary layer depth: Improved measurement by Doppler radar wind profiler using fuzzy logic methods[J]. J Atmos Ocean Technol, 2002, 19(11): 1745-1758.
[15] 葛凤翔, 孟华东, 彭应宁, 等. 杂波谱中心和谱宽估计方法[J]. 清华大学学报: 自然科学版, 2002, 42(7): 941-944.
[16] 曹俊武, 刘黎平, 葛润生. 模糊逻辑法在双线偏振雷达识别降水粒子相态中的研究[J]. 大气科学, 2005, 29(5): 827-836.
[17] Peter H, Hildebrand R, Sekhon S. Objective determination of the noise level in doppler spectra[J]. J Appl Meteor, 1974, 13(10): 808-811.
[18] 董德保, 翁宁泉, 肖黎明, 等. 一种风廓线雷达谱矩估计方法研究[J]. 现代雷达, 2009, 31(9): 40-43.
[19] Siggia A D, Passarelli R E. Gaussian model adaptive processing (GMAP) for improved ground clutter cancellation and moment calculation[C]. Proceedings of the 3rd European Conterence on radar Meteorology (ERAD 2004), Visy, Sweden, 2004: 67-73.
[1] . On the Research Progress of the Subtropical EastAsian Monsoon and Related Problem[J]. PLATEAU METEOROLOGY, 2008, 27(增刊): 1 -7 .
[2] . [J]. PLATEAU METEOROLOGY, 2010, 29(3): 737 -743 .
[3] . [J]. PLATEAU METEOROLOGY, 2010, 29(1): 109 -114 .
[4] . Effect of the Cloud-Top Height on Back-Scattered UltravioletRadiation Measuring Total Ozone[J]. PLATEAU METEOROLOGY, 2009, 28(3): 647 -651 .
[5] . [J]. PLATEAU METEOROLOGY, 2010, 29(3): 755 -762 .
[6] . Analysis on Cloud Vertical Structure over China andIts Neighborhood Based on CloudSat Data[J]. PLATEAU METEOROLOGY, 2011, 30(1): 38 -52 .
[7] . [J]. PLATEAU METEOROLOGY, 2010, 29(5): 1261 -1269 .
[8] . Characteristic  Analyses on Hydrological and Related Meteorological
Factors on the North Slope of Mount Qomolangma
[J]. PLATEAU METEOROLOGY, 2013, 32(1): 31 -37 .
[9] HOU Wei, ZHANG Da-Quan, QIAN Zhong-Hua, FENG Guo-Lin. Research about the Extreme High Temperature Event and Its Composite
Index Based on Stochastic Re-Sort Detrended Fluctuation Analysis
[J]. PLATEAU METEOROLOGY, 2012, 31(2): 329 -341 .
[10] LIU Mei, ZHANG Bei, YU Jian-Wei, HU Luo-Lin, GAO 苹. Characteristics of Upper Energy Transport and Coupling of
Meteorology  Elements on Upper and Lower Levels during
Rainstorm Process in Meiyu Season of Jiangsu
[J]. PLATEAU METEOROLOGY, 2012, 31(3): 777 -787 .