The applicability of Standardized Precipitation Evapotranspiration Index (SPEI) in China has been analyzed. The main aspects of this research comprise goodness of fit test, capability in reproducing history drought events and the comparison between SPEI and Standardized Precipitation Index (SPI) and Palmer Drought Severity Index (PDSI), both of which are widely used in drought monitoring and analysis. The result of goodness of fit test shows that for the boreal winter and shortest time scales, the precipitation minus potential evapotranspiration series fail to match the presumed Log-logistic distribution in the south of Xinjiang, the northwest of Tibet and the area from North China to Hetao indicating the unreliability of SPEI values. With mentioned exceptions above, for most regions nationwide a good fit between the sample series and the Log-logistic distribution independent of the time scale and the month of the year guarantees the robustness of SPEI computation. Secondly, the comparison between spatial distribution of SPEI and China Historical Drought Dataset in typical years indicates that SPEI has good performance in measuring drought as well as flood. Furthermore, the relationship among SPEI, SPI and PDSI is also analyzed. The correlation coefficient between SPEI and SPI is roughly above 0.8 for different time scales. However, how well the SPEI correlated with PDSI relies on the time scale. When the time scale is less than 10 months, the poor correlation is observed between SPEI and PDSI; when the time scale is greater than 10 months, the correlation coefficient between SPEI and PDSI remains between 0.7 and 0.9. The comparison result shows that if the suitable time scale is chosen, the statistically based drought index, SPEI, has the similar capacity with PDSI which is based on complex soil water balance to describe and monitor drought reasonably. Furthermore, the SPEI has flexibility to adapt to intrinsic multi-scale nature of drought and advantage over simple calculation.
[1]张书余. 干旱气象学[M]. 北京: 气象出版社, 2008.
[2]国家科学技术委员会. 气候[M]. 北京: 科学技术文献出版社, 1990.
[3]黄荣辉, 徐予红, 周连童. 我国夏季降水的年代际变化及华北干旱化趋势[J]. 高原气象, 1999, 18(4): 465-476.
[4]琚建华, 吕俊梅, 任菊章. 北极涛动年代际变化对华北地区干旱化的影响[J]. 高原气象, 2006, 25(1): 74-81.
[5]李维京, 赵振国, 李想, 等. 中国北方干旱的气候特征及其成因的初步研究[J]. 干旱气象, 2003, 21(4): 1-5.
[6]池再香, 杜正静, 陈忠明, 等. 20092010年贵州秋、冬、春季干旱气象要素与环流特征分析[J]. 高原气象, 2012, 31(1): 176-184.
[7]段旭, 陶云, 郑建萌, 等. 气象干旱时空表达方式的探讨[J]. 高原气象, 2012, 31(5): 1332-1339.
[8]简茂球, 乔云亭, 温之平. 华南季节干旱及连旱特征分析[J]. 中山大学学报(自然科学版), 2008, 47(4): 118-121.
[9]吴友均, 师庆东, 常顺利. 19612008年新疆地区旱涝时空分布特征[J]. 高原气象, 2011, 30(2): 391-396.
[10]钱正安, 宋敏红, 李万源, 等. 全球、中蒙干旱区及其部分地区降水分布细节[J]. 高原气象, 2011, 30(1): 1-12.
[11]温之平, 吴乃庚, 冯业荣, 等. 定量诊断华南春旱的形成机理[J]. 大气科学, 2007, 31(6): 1223-1236.
[12]张万诚, 万云霞, 任菊章, 等. 水汽输送异常对2009年秋、冬季云南降水的影响研究[J]. 高原气象, 2011, 30(6): 1534-1542.
[13]Dai A. Drought under global warming: A review[J]. Wiley Interdisciplinary Reviews: Climate Change, 2011, 2(1): 45-65.
[14]Palmer W C. Meteorological drought[R]. Research Paper No. 45, US Dept. of Commerce, 1965: 1-58.
[15]McKee T B, Doesken N J, Kleist J. The relationship of drought frequency and duration to time scales[C]. Preprints, 8<sup>th</sup> Conference on Applied Climatology, Anaheim, January 17-22, 1993: 179-184.
[16]陈峰, 袁玉江, 魏文寿, 等. 树轮记录的伊犁地区近354年帕尔默干旱指数变化[J]. 高原气象, 2011, 30(2): 355-362.
[17]李新周, 刘晓东, 马柱国. 近百年来全球主要干旱区的干旱化特征分析[J]. 干旱区研究, 2004, 21(2): 97-103.
[18]Alley W M. The Palmer Drought Severity Index: limitations and assumptions[J]. J Climate Appl Meteor, 1984, 23(7): 1100-1109.
[19]Guttman N B. Comparing the Palmer Drought Index and the Standardized Precipitation Index[J]. Journal of the American Water Resources Association, 1998, 34(1): 113-121.
[20]Wells N, Goddard S, Hayes M J. A self-calibrating Palmer Drought Severity Index[J]. J Climate, 2004, 17(12): 2335-2351.
[21]Vicente-Serrano S M, Beguer A S, López-Moreno J I. Comment on "Characteristics and trends in various forms of the Palmer Drought Severity Index (PDSI) during 1900-2008" by Aiguo Dai[J]. J Geophys Res, 2011, 116(D19), D19112, doi:10.1029/2011JD016410.
[22]McKee T B, Doesken N J, Kleist J. Drought monitoring with multiple time scales[C]. Preprints, 9<sup>th</sup> Conference on Applied Climatology, Dallas, 1995: 233-236.
[23]Hayes M J, Svoboda M D, Wilhite D A, et al. Monitoring the 1996 drought using the Standardized Precipitation Index[J]. Bull Amer Meteor Soc, 1999, 80(3): 429-438.
[24]Vicente-Serrano S M, Beguer A S, López-Moreno J I. A multiscalar drought index sensitive to global warming: The standardized precipitation evapotranspiration index[J]. J Climate, 2009, 23(7): 1696-1718.
[25]秦鹏程, 姚凤梅, 张佳, 等. 基于SPEI指数的近50年东北玉米生长季干旱演变特征[C]//中国气象学会编著. 第28届中国气象学会年会—S11气象与现代农业. 福建厦门, 2011: 86-94.
[26]王芝兰, 王劲松, 李耀辉, 等. 标准化降水指数与广义极值分布干旱指数在西北地区应用的对比分析[J]. 高原气象, 2013, 32(3): 839-847, doi: 10.7522/j.issn.1000-0534. 2012.00077.
[27]李伟光, 易雪, 侯美亭, 等. 基于标准化降水蒸散指数的中国干旱趋势研究[J]. 中国生态农业学报, 2012, 20(5): 643-649.
[28]苏宏新, 李广起. 基于SPEI 的北京低频干旱与气候指数关系[J]. 生态学报, 2012, 32(17): 5467-5475.
[29]王林, 陈文. 近百年西南地区干旱的多时间尺度演变特征[J]. 气象科技进展, 2012, 2(4): 21-26.
[30]Webb R S, Rosenzweig C E, Levine E R. Specifying land surface characteristics in general circulation models: Soil profile data set and derived water-holding capacities[J]. Global Biogeochemical Cycles, 1993, 7(1): 97-108.
[31]Thornthwaite C W. An approach toward a rational classification of climate[J]. Geographical Review, 1948, 38(1): 55-94.
[32]Hosking J R M. L-moments: analysis and estimation of distributions using linear combinations of order statistics[J]. Journal of the Royal Statistical Society (Series B), 1990: 105-124.
[33]Corder G W, Foreman D I. Nonparametric Statistics for Non-statisticians: A Step-by-step Approach[M]. New Jersey: John Wiley & Sons, 2009: 26-32.
[34]中央气象局气象科学研究院主编. 中国近五百年旱涝分布图集[M]. 北京: 地图出版社, 1981.
[35]张德二, 刘传志. 《中国近五百年旱涝分布图集》续补(1980-1992年)[J]. 气象, 1993, 19(11): 41-45.
[36]张德二, 李小泉, 梁有叶. 《中国近五百年旱涝分布图集》的再续补(1993-2000年)[J]. 应用气象学报, 2003, 14(3): 379-384.