Existence of Generalized Energy about a Navier-Stokes Operator Equation

  • LIU Chun ,
  • LIU Sibo ,
  • ZHANG Chunhui ,
  • GUO Sasa
Expand
  • Neijiang Meteorological Bureau,Neijiang 641000, China;2. Chengdu University of Information Technology, Chengdu 610225, China

Received date: 2012-04-23

  Online published: 2014-04-28

Abstract

The equations are reduced to nonlinear operator equations of Hilbert space by using functional theory, based on each variable Hilbert space of the general system of atmospheric Navier-Stokes dynamics equations. Thereby, considered the equation for the overall characteristics on this basis, using necessary simplification, the underdetermined partial differential equations are reduced to nonlinear partial differential equations about generalized energy. Because of the nonlinear properties of the partial differential equations, the existence of weak solutions is attempted to consider. According to the analysis, in the turbulent closure process, if the nonlinear coefficient of the generalized energy equation has characteristics of strongly elliptic, according to the projection method of the continuous normal operator equations, that nonlinear partial differential equations of generalized energy has a projection determined, which approach the weak solution, while the external force is known or fixed. In last, the existence of weak solutions for generalized energy is obtained. On the movement of atmosphere, its energy conservation is important. Therefore, conserve-ation of generalized energy is discussed. And the conditions of reaching the conservation of general-ized energy is obtained in the last of this paper.

Cite this article

LIU Chun , LIU Sibo , ZHANG Chunhui , GUO Sasa . Existence of Generalized Energy about a Navier-Stokes Operator Equation[J]. Plateau Meteorology, 2014 , 33(2) : 467 -473 . DOI: 10.7522/j.issn.1000-0534.2012.00190

References

[1]李建平, 丑纪范. 大气吸引子的存在性[J]. 中国科学(D辑), 1997, 27(1):89-96.
[2]李燕, 刘新, 李伟平. 青藏高原地区不同下垫面陆面过程的数值模拟研究[J]. 高原气象, 2012, 31(3):581-591.
[3]何由, 阳坤, 姚檀栋, 等. 基于WRF模式对青藏高原一次强降水的模拟[J]. 高原气象, 2012, 31(5):1183-1191.
[4]杨显玉, 文军. 扎陵湖和鄂陵湖大气边界层特征的数值模拟[J]. 高原气象, 2012, 31(4):927-934.
[5]赵大军, 江玉华, 李莹. 一次西南低涡暴雨过程的诊断分析与数值模拟[J]. 高原气象, 2011, 30(5): 1158-1169.
[6]宋雯雯, 李国平. 一次高原低涡过程的数值模拟与结构特征分析[J]. 高原气象, 2011, 30(2): 267-275.
[7]Temam R. Navier-Stokes Equations, Theory and Numerical Analysis[M]. Amsterdam and New York: North-Holland, 1977.
[8]Temam R. Navier-Stokes Equations and Nonlinear Functional Analysis[M]. Philandelphia: SIAM, 1985.
[9]Constantin P, Foias C, Temam R. On the Large Time Galerkin Approximation of the Navier-Stokes Equations[J]. Siam J Nmer Anal, 1984, 21(4): 615-634.
[10]谢志辉, 丑纪范. 大气动力学方程组全局分析的研究进展[J]. 地球科学进展, 1999, 14(2): 133-139.
[11]李建平, 丑纪范. 大气动力学方程组的定性理论及其应用[J]. 大气科学, 1998, 22(4): 443-453.
[12]李建平, 丑纪范. 非线性大气动力学的进展[J]. 大气科学, 2003, 27(4): 653-673.
[13]黄海洋, 郭柏灵. 大尺度大气方程组解和吸引子的存在性[J]. 中国科学(D辑), 2006, 36(4): 392-400.
[14]胡隐樵. 大气热力动力学导论[M]. 北京: 地质出版社, 2002.
[15]雷晋干. 算子方程投影解法[M]. 武汉: 武汉大学出版社, 1987.
Outlines

/