Analysis on Radar Echo and Precipitation Retrieve of Short-Duration Heavy Precipitation in Southeast Gansu

  • ZHANG Zhixian ,
  • ZHANG Qiang ,
  • ZHAO Qingyun ,
  • SUN Yun ,
  • ZHANG Liyang
Expand
  • Institute of Arid Meteorology, China Meteorological Administration/Gansu Key Laboratory of Arid Climatic Change and Reducing Disaster/ Key Open Laboratory of Arid Climatic Change and Disaster Reduction of China Meteorological Administration, Lanzhou730020, China;2. College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China;3. Unit of 93808 of People's Liberation Army, Yuzhong 730017, China;4. Center of Lanzhou Meteorological Observatory, Lanzhou 730020, China;5. Lanzhou Resources and Environment Voc-Tech College, Lanzhou 730020, China

Received date: 2012-09-06

  Online published: 2014-04-28

Abstract

Radar quantitative measurement of precipitation has more advantage in time and space, but the relationship between the change of terrain and precipitation type has great rate. Studying on the radar quantitative measurement of precipitation is one of the main development ways to improve the radar applied ability utilize radar volume scan data. The reflectivity difference of Tianshui, Qingyang and Lanzhou weather radars on the equidistant line were contrasted when they simultaneously observe and the radar echo and precipitation retrieved if occur short-duration heavy rainfall were also analysed by using radar volume scan data. The result shows that: There is no obvious difference when echo more than 10 dBz; Comparing the region station with automatic station of precipitation, comparing the weather scale is less caused by short-duration heavy precipitation than other rainfall type, on the other hand, this conclusion also proved by statistic of radar echo. There are the scale about which 75% of the heavy precipitation are less than 20 km; The original station can't perfectly characterize the local precipitation is demonstrated; The estimated quantitative precipitation through packet of estimation, holistic and categorical Z-I relations were studied. The result shows that: Categorical Z-I relation is better than others on describe precipitation type in the Northeast edge of Tibetan Plateau, thus better solving the problem of underestimated light rain and overestimated heavy rain,and when rainfall belongs to 15~20 mm·h-1 is best.

Cite this article

ZHANG Zhixian , ZHANG Qiang , ZHAO Qingyun , SUN Yun , ZHANG Liyang . Analysis on Radar Echo and Precipitation Retrieve of Short-Duration Heavy Precipitation in Southeast Gansu[J]. Plateau Meteorology, 2014 , 33(2) : 530 -538 . DOI: 10.7522/j.issn.1000-0534.2013.00001

References

[1]白肇烨, 徐国昌. 中国西北天气[M]. 北京: 气象出版社, 1988: 117-130.
[2]杨兴国, 张强, 杨启国, 等. 陇中黄土高原半干旱区总体输送系数的特征[J]. 高原气象, 2010, 29(1): 44-50.
[3]李安泰, 何宏让, 张云. WRF模式陆面参数扰动对一次西北暴雨影响的数值模拟[J]. 高原气象, 2012, 31(1): 65-75.
[4]李典, 白爱娟, 黄盛军. 利用TRMM卫星资料对青藏高原地区强对流天气特征分析[J]. 高原气象, 2012, 31(2): 304-311.
[5]陈明, 傅抱璞, 于强. 山区地形对暴雨的影响[J]. 地理学报, 1995, 50(3): 256-263.
[6]Browning K A. Developments in observational system for weather forecasting[J]. Meteor Appl, 1994, 1: 3-21.
[7]张利平, 张晓琳, 王任超, 等. 雷达估算降雨的同化方法对比[J]. 武汉大学学报, 2011, 44(2): 146-150.
[8]肖艳姣, 王斌, 陈晓辉, 等. 移动X波段双线偏振多普勒天气雷达差分相位数据质量控制[J]. 高原气象, 2012, 31(1): 223-230.
[9]郑媛媛, 谢亦峰, 吴林林, 等. 多普勒雷达定量估测降水的三种方法比较试验[J]. 热带气象学报, 2004, 20(2): 192-197.
[10]邓雪娇, 黄浩辉, 吴兑. 变分法在校准雷达定量估测降水中的应用[J]. 应用气象学报, 2010, 11(2): 255-256.
[11]马慧, 万齐林, 陈子通, 等. 基于ZI关系和变分校正法改进雷达估测降水[J]. 热带气象学报, 2008, 24(5): 546-549.
[12]刘红燕, 陈洪滨, 雷恒池, 等. 利用2004年北京雨滴谱资料分析降水强度和雷达反射率因子的关系[J]. 气象学报, 2008, 66(1): 125-129.
[13]庄薇, 刘黎平, 王改利, 等. 青藏高原复杂地形区雷达估测降水方法研究[J]. 高原气象, 2013, 32(5): 1224-1235, doi: 10.7522/j.issn.1000-0534.2012.00118.
[14]仲凌志, 刘黎平, 顾松山. 层状云和对流云的雷达识别记载估测雨量中的应用[J]. 高原气象, 2007, 26(3): 593-602.
[15]肖艳娇. 新一代天气雷达三维组网技术及其应用研究[D]. 南京: 南京信息工程大学, 2007.
[16]Smith J A, Seo D J, Baeck M L, et al. An intercomparison study of NEXRAD precipitation estimates[J]. Water Resources Research, 1996, 32(7): 2035-2045.
[17]晋立军, 李培仁, 李军霞, 等. 一次强降雹过程中垂直累积液态含水量的特征分析[J]. 高原气象, 2010, 29(5): 1297-1301.
[18]付双喜, 安林, 康凤琴, 等. VIL在识别冰雹云中的应用及估测误差分析[J]. 高原气象, 2004, 23(6): 810-814.
[19]俞小鼎, 熊廷南, 姚秀萍, 等. 多普勒天气雷达原理与业务应用[M]. 北京: 气象出版社, 2006: 231-258.
[20]Zhang J, Howard K, Gourley J J. Constructing three-dimention multiple radar reflectivity mosaics:Examples of convective storms and stratiform rain echoes[J]. J Atmos Ocean Technol, 2005, 22: 30-42.
[21]Weygandt S S, Shapiro A, Droegemeier K K. Retrieval of model initial fields from single-doppler observations of a supercell thunderstorm.Part Ⅰ: Single-doppler velocity retrieval[J]. Mon Wea Rev, 2002, 130: 433-453.
[22]Shapiro A, Robinson P, Wurman J, et al. single-Doppler velocity retrieval with rapid-scan radar data[J]. J Atmos Ocean Technol, 2003, 20: 1758-1775.
[23]Barnes L. A technique for maximizing details in numerical weather map analysis[J]. J Appl Meteor, 1964, 3: 395-409.
[24]肖艳娇, 刘黎平. 新一代天气雷达网资料的三维格点化及拼图方法研究[J]. 气象学报, 2006, 64(5): 647-657.
[25]张沛源, 周海光, 胡绍萍. 双多普勒天气雷达风场探测的可靠性研究[J]. 应用气象学报, 2002, 13(4): 485-495.
[26]肖艳娇, 刘黎平, 杨洪平. 区域雷达网同步观测对比分析[J]. 气象学报, 2007, 65(6): 919-927.
[27]汪瑛, 冯业荣, 蔡锦辉, 等. 雷达定量降水动态分级ZI关系估算方法[J]. 热带气象学报, 2011, 24(4): 601-608.
[28]张培昌, 杜秉玉, 戴铁丕. 雷达气象学[M]. 北京, 气象出版社, 2001: 177-217.
[29]姚燕飞. ZI关系对雷达测量流域面雨量和径流模拟影响的研究[D]. 北京: 中国气象科学研究院, 2007.
[30]Gerstnera E M, Heinemann G. Real-time areal precipitation determination from radar by means of statistical objective analysis[J]. J Hydrol, 2008, 352: 296-308.
[31]张培昌, 戴铁丕, 傅德胜, 等. 用变分方法校准数字化天气雷达测定区域降水量基本原理和精度[J]. 大气科学, 1992, 16(2): 248-256.
[32]俞小鼎, 郑媛媛, 张爱民, 等. 安徽一次强烈龙卷的多普勒天气雷达分析[J]. 高原气象, 2006, 25(5): 914-924.
Outlines

/