Seasonal Variation of Turbulence Characteristics over Alpine Meadow Ecosystem

  • CHEN Yungang ,
  • ZHANG Yu ,
  • WANG Shaoying ,
  • SHANG Lunyu ,
  • XIONG Jiansheng ,
  • SHEN Xiaoyan
Expand
  • Key Laboratory of Surface Process and Climate Change in Cold and Arid Regions, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Science, Lanzhou 730000, China;2. University of Chinese Academy of Science, Beijing 100049, China

Received date: 2013-12-18

  Online published: 2014-06-28

Abstract

The relationships between normalized standard deviations of wind velocity components, temperature, water vapor, CO2 and stability parameters z/L, and their seasonal variation characteristics in the frame of Monin-Obukhov similarity theory(MOST) were investigated. The turbulent data were collected from an homogeneous, flat and open grassland of the northeast edge of Qinghai-Xizang Plateau in 2010. The results show that normalized standard deviation of wind velocity components generally meet 1/3 power law. σu/v*σv/u* and σw/v* increase along with the increase of |z/L|. Under near neutral condition(|z/L|<0.05), normalized standard deviations are approximate constant, and σu/u*>σv/u*>σw/u*σ. The normalized standard deviation of the horizontal wind velocity decreases with increase of aerodynamic roughness Z0m, and σw/u* does not have obvious seasonal variation, which can be regarded as a constant on the whole. Under unstable conditions, the normalized standard deviations of temperature, water vapor and CO2 in relation to z/L satisfy the similarity law, which decrease along with the increase of |z/L|. Under near neutral condition, σq/q*>σc/C*>σT/T*. The seasonal variations of σT/T*, σq/q* and σc/C* mainly depend on the seasonal change of characteristic scale T*, q* and C*, which increase with the increase of turbulent fluxes. Compared with the latent heat and CO2 flux, sensible heat flux has evidently reverse seasonal tendency, with minimal season variety and minimum value in summer. Accordingly, the extent of annual variation σT/T* is relatively small and maximum value is in summer, while σq/q* and σc/C* have reverse seasonal tendency.

Cite this article

CHEN Yungang , ZHANG Yu , WANG Shaoying , SHANG Lunyu , XIONG Jiansheng , SHEN Xiaoyan . Seasonal Variation of Turbulence Characteristics over Alpine Meadow Ecosystem[J]. Plateau Meteorology, 2014 , 33(3) : 585 -595 . DOI: 10.7522/j.issn.1000-0534.2014.00044

References

[1]Monin A S, Yaglom A M. Statistical fluid mechanics[M]. Cambridge: MIT Press, 1975: 875.
[2]Monin A S, Obukhov A M. Dimensionless characteristics of turbulence in the surface layer[J]. Akad Nauk SSR, 1954, 24: 163-187.
[3]Pegahfar N, Bidokhti A. Similarity relations in a stable and relatively neutral surface layer in an urban area with complex topography (Tehran)[J]. Environmental Fluid Mechanics, 2013, 13(1): 1-31.
[4]Cvitan L. Classification of the stratified atmospheric boundary layers at Molve (Croatia) based on the similarity theory[J]. Meteor Atmos Phys, 2006, 93(3-4): 235-246.
[5]De Bruin H. A note on Businger's derivation of nondimensional wind and temperature profiles under unstable conditions[J]. J Appl Meteor, 1999, 38(5): 626-628.
[6]Zhou D, Huang R. Characterization of turbulent flux transfer over a Gobi surface with quality-controlled observations[J]. Science China Earth Sciences, 2011, 54(5):753-763.
[7]Niu S, Zhao L, Lu C, et al. Observational evidence for the Monin-Obukhov similarity under all stability conditions[J]. Adv Atmos Sci, 2012, 29: 285-294.
[8]Venkatram A, Princevac M. Using measurements in urban areas to estimate turbulent velocities for modeling dispersion[J]. Atmos Environ, 2008, 42(16): 3833-3841.
[9]Cheng Y, Parlange M B, Brutsaert W. Pathology of Monin-Obukhov similarity in the stable boundary layer[J]. J Geophys Res, 2005, 110, D06101, doi: 10.1029/2004JD004923.
[10]Trumner K, Kottmeier C, Corsmeier U, et al. Convective boundary-layer entrainment: Short review and progress using doppler lidar[J]. Bound-Layer Meteor, 2011, 141(3):369-391.
[11]Bowen B M. Analysis of turbulence profiles from three tall towers: departure from similarity theory in near-neutral and stable conditions[J]. Open Atmos Sci J, 2008, 2:106-116.
[12]Simpson I J, Thurtell G W, Neumann H H, et al. The validity of similarity theory in the roughness sublayer above forests[J]. Bound-Layer Meteor, 1998, 87(1): 69-99.
[13]Panofsky H A, Tennekes H, Lenschow D H, et al. The characteristics of turbulent velocity components in the surface layer under convective conditions[J]. Bound-Layer Meteor, 1977, 11(3):355-361.
[14]Panofsky H A, Dutton J A. Atmospheric turbulence: models and methods for engineering aplications[M]. New York: Wiley-Interscience, 1984: 397.
[15]张宏升, 李富余, 陈家宜. 不同下垫面湍流统计特征研究[J]. 高原气象, 2004, 23(5): 598-604.
[16]Mahrt L. Nocturnal boundary-layer regimes[J]. Bound-Layer Meteor, 1998, 88(2): 255-278.
[17]卞林根, 陆龙骅, 程彦杰, 等. 青藏高原东南部昌都地区近地层湍流输送的观测研究[J]. 应用气象学报, 2001, 12(1): 1-13.
[18]刘辉志, 洪钟祥. 青藏高原改则地区近地层湍流特征[J]. 大气科学, 2000, 24(3): 289-300.
[19]马耀明, 马伟强, 胡泽勇, 等.青藏高原草甸下垫面湍流强度相似性关系分析[J]. 高原气象, 2002, 21(5): 514-517.
[20]周明煜, 徐祥德, 卞林根, 等. 青藏高原大气边界层观测分析与动力学研究[M]. 北京: 气象出版社, 2000.
[21]Nordbo A, Jrvi L, Haapanala S, et al. Intra-city variation in urban morphology and turbulence structure in Helsinki, Finland[J]. Bound-Layer Meteor, 2013, 146(3): 469-496.
[22]Rannik ü. On the surface layer similarity at a complex forest site[J]. J Geophys Res, 1998, 103(D8): 8685-8697.
[23]Moriwaki R, Kanda M. Local and global similarity in turbulent transfer of heat, water vapour, and CO<sub>2</sub> in the dynamic convective sublayer over a suburban area[J]. Bound-Layer Meteor, 2006, 120(1): 163-179.
[24]Quan L, Hu F. Relationship between turbulent flux and variance in the urban canopy[J]. Meteor Atmos Phys, 2009, 104(1-2): 29-36.
[25]Hsieh C I, Lai M C, Hsia Y J, et al. Estimation of sensible heat, water vapor, and CO<sub>2</sub> fluxes using the flux-variance method[J]. Inter J Biometeorol, 2008, 52(6): 521-533.
[26]Williams C A, Scanlon T M, Albertson J D. Influence of surface heterogeneity on scalar dissimilarity in the roughness sublayer[J]. Bound-Layer Meteor, 2007, 122(1): 149-165.
[27]黄荣辉, 陈际龙, 周连童, 等. 关于中国重大气候灾害与东亚气候系统之间关系的研究[J]. 大气科学, 2003, 27(4): 770-787.
[28]胡隐樵, 陈晋北, 吕世华. 从湍流经典理论到大气湍流非平衡态热力学理论[J]. 高原气象, 2012, 31(1): 1-27.
[29]吴灏, 叶柏生, 吴锦奎, 等. 疏勒河上游高寒草甸下垫面湍流特征分析[J]. 高原气象, 2013, 32(2): 368-376, doi:10.7522/j.issn.1000-0534.2013.00036.
[30]马耀明, 塜本修, 吴晓鸣, 等. 藏北高原草甸下垫面近地层能量输送及微气象特征[J].大气科学, 2000, 24(5): 715-722.
[31]Wang S Y, Zhang Y, Lü S H, et al. Estimation of turbulent fluxes using the flux-variance method over an alpine meadow surface in the eastern Tibetan Plateau[J]. Adv Atmos Sci, 2013, 30(2): 411-424.
[32]李国平, 徐琪. 边界层动力"抽吸泵" 对青藏高原低涡的作用[J]. 大气科学, 2005, 29(6): 965-972.
[33]Niu K, Choler P, Zhao B, et al. The allometry of reproductive biomass in response to land use in Tibetan alpine grasslands[J]. Functional Ecology, 2009, 23(2): 274-283.
[34]徐安伦, 李建, 孙绩华, 等. 青藏高原东南缘大理地区近地层微气象特征及能量交换分析[J]. 高原气象, 2013, 32(1): 9-22, doi: 10.7522/j.issn.1000-0534.00002.
[35]王少影, 张宇, 吕世华, 等. 玛曲高寒草甸地表辐射与能量收支的季节变化[J]. 高原气象, 2012, 31(3): 605-614.
[36]Foken T, Wichura B. Tools for quality assessment of surface-based flux measurements[J]. Agricultural and Forest Meteorology, 1996, 78(1): 83-105.
[37]孙俊, 胡泽勇, 陈学龙, 等. 黑河中上游不同下垫面动量总体输送系数和地表粗糙度对比分析[J]. 高原气象, 2012, 31(4): 920-926.
[38]李英, 李跃清, 赵兴炳. 青藏高原东部与成都平原大气边界层对比分析Ⅱ: 近地层湍流特征[J].高原山地气象研究, 2008, 28(3): 8-14.
[39]Zhou M Y, Yao W Q, Xu X D, et al. Vertical dynamic and thermodynamic characteristics of urban lower boundary layer and its relationship with aerosol concentration over Beijing[J]. 中国科学(D辑), 2005, 48(增刊2): 25-37.
[40]苏红兵, 洪钟祥. 北京城郊近地层湍流实验观测[J]. 大气科学, 1994, 18(3): 739-750.
[41]Katul G, Goltz S M, Hsieh C I, et al. Estimation of surface heat and momentum fluxes using the flux-variance method above uniform and non-uniform terrain[J]. Bound-Layer Meteor, 1995, 74(3): 237-260.
[42]Choi T, Hong J, Kim J, et al. Turbulent exchange of heat, water vapor, and momentum over a Tibetan prairie by eddy covariance and flux variance measurements[J]. J Geophys Res, 2004, 109, D21106, doi: 10.1029/2004JD004767.
[43]Gao Zhiqiu, Bian Lingen, Chen Zhigang, et al. Turbulent Variance Characteristics of Temperature and Humidity over a Non-uniform Land Surface for an Agricultural Ecosystem in China[J]. Adv Atmos Sci, 2006, 23(3): 365-374.
[44]Ohtaki E. On the similarity in atmospheric fluctuations of carbon dioxide, water vapor and temperature over vegetated fields[J]. Bound-Layer Meteor, 1985, 32(1): 25-37.
[45]Cava D, Katul G, Sempreviva A M, et al. On the anomalous behaviour of scalar flux-variance similarity functions within the canopy sub-layer of a dense alpine forest[J]. Bound-Layer Meteor, 2008, 128(1): 33-57.
[46]Fang J Y, Fei S L. Carbon cycle in the arctic terrestrial ecosystems in relation to the global warming[J]. Acta Sci Circ, 1998, 18(2): 113-121.
Outlines

/