[1]Monin A S, Yaglom A M. Statistical fluid mechanics[M]. Cambridge: MIT Press, 1975: 875.
[2]Monin A S, Obukhov A M. Dimensionless characteristics of turbulence in the surface layer[J]. Akad Nauk SSR, 1954, 24: 163-187.
[3]Pegahfar N, Bidokhti A. Similarity relations in a stable and relatively neutral surface layer in an urban area with complex topography (Tehran)[J]. Environmental Fluid Mechanics, 2013, 13(1): 1-31.
[4]Cvitan L. Classification of the stratified atmospheric boundary layers at Molve (Croatia) based on the similarity theory[J]. Meteor Atmos Phys, 2006, 93(3-4): 235-246.
[5]De Bruin H. A note on Businger's derivation of nondimensional wind and temperature profiles under unstable conditions[J]. J Appl Meteor, 1999, 38(5): 626-628.
[6]Zhou D, Huang R. Characterization of turbulent flux transfer over a Gobi surface with quality-controlled observations[J]. Science China Earth Sciences, 2011, 54(5):753-763.
[7]Niu S, Zhao L, Lu C, et al. Observational evidence for the Monin-Obukhov similarity under all stability conditions[J]. Adv Atmos Sci, 2012, 29: 285-294.
[8]Venkatram A, Princevac M. Using measurements in urban areas to estimate turbulent velocities for modeling dispersion[J]. Atmos Environ, 2008, 42(16): 3833-3841.
[9]Cheng Y, Parlange M B, Brutsaert W. Pathology of Monin-Obukhov similarity in the stable boundary layer[J]. J Geophys Res, 2005, 110, D06101, doi: 10.1029/2004JD004923.
[10]Trumner K, Kottmeier C, Corsmeier U, et al. Convective boundary-layer entrainment: Short review and progress using doppler lidar[J]. Bound-Layer Meteor, 2011, 141(3):369-391.
[11]Bowen B M. Analysis of turbulence profiles from three tall towers: departure from similarity theory in near-neutral and stable conditions[J]. Open Atmos Sci J, 2008, 2:106-116.
[12]Simpson I J, Thurtell G W, Neumann H H, et al. The validity of similarity theory in the roughness sublayer above forests[J]. Bound-Layer Meteor, 1998, 87(1): 69-99.
[13]Panofsky H A, Tennekes H, Lenschow D H, et al. The characteristics of turbulent velocity components in the surface layer under convective conditions[J]. Bound-Layer Meteor, 1977, 11(3):355-361.
[14]Panofsky H A, Dutton J A. Atmospheric turbulence: models and methods for engineering aplications[M]. New York: Wiley-Interscience, 1984: 397.
[15]张宏升, 李富余, 陈家宜. 不同下垫面湍流统计特征研究[J]. 高原气象, 2004, 23(5): 598-604.
[16]Mahrt L. Nocturnal boundary-layer regimes[J]. Bound-Layer Meteor, 1998, 88(2): 255-278.
[17]卞林根, 陆龙骅, 程彦杰, 等. 青藏高原东南部昌都地区近地层湍流输送的观测研究[J]. 应用气象学报, 2001, 12(1): 1-13.
[18]刘辉志, 洪钟祥. 青藏高原改则地区近地层湍流特征[J]. 大气科学, 2000, 24(3): 289-300.
[19]马耀明, 马伟强, 胡泽勇, 等.青藏高原草甸下垫面湍流强度相似性关系分析[J]. 高原气象, 2002, 21(5): 514-517.
[20]周明煜, 徐祥德, 卞林根, 等. 青藏高原大气边界层观测分析与动力学研究[M]. 北京: 气象出版社, 2000.
[21]Nordbo A, Jrvi L, Haapanala S, et al. Intra-city variation in urban morphology and turbulence structure in Helsinki, Finland[J]. Bound-Layer Meteor, 2013, 146(3): 469-496.
[22]Rannik ü. On the surface layer similarity at a complex forest site[J]. J Geophys Res, 1998, 103(D8): 8685-8697.
[23]Moriwaki R, Kanda M. Local and global similarity in turbulent transfer of heat, water vapour, and CO<sub>2</sub> in the dynamic convective sublayer over a suburban area[J]. Bound-Layer Meteor, 2006, 120(1): 163-179.
[24]Quan L, Hu F. Relationship between turbulent flux and variance in the urban canopy[J]. Meteor Atmos Phys, 2009, 104(1-2): 29-36.
[25]Hsieh C I, Lai M C, Hsia Y J, et al. Estimation of sensible heat, water vapor, and CO<sub>2</sub> fluxes using the flux-variance method[J]. Inter J Biometeorol, 2008, 52(6): 521-533.
[26]Williams C A, Scanlon T M, Albertson J D. Influence of surface heterogeneity on scalar dissimilarity in the roughness sublayer[J]. Bound-Layer Meteor, 2007, 122(1): 149-165.
[27]黄荣辉, 陈际龙, 周连童, 等. 关于中国重大气候灾害与东亚气候系统之间关系的研究[J]. 大气科学, 2003, 27(4): 770-787.
[28]胡隐樵, 陈晋北, 吕世华. 从湍流经典理论到大气湍流非平衡态热力学理论[J]. 高原气象, 2012, 31(1): 1-27.
[29]吴灏, 叶柏生, 吴锦奎, 等. 疏勒河上游高寒草甸下垫面湍流特征分析[J]. 高原气象, 2013, 32(2): 368-376, doi:10.7522/j.issn.1000-0534.2013.00036.
[30]马耀明, 塜本修, 吴晓鸣, 等. 藏北高原草甸下垫面近地层能量输送及微气象特征[J].大气科学, 2000, 24(5): 715-722.
[31]Wang S Y, Zhang Y, Lü S H, et al. Estimation of turbulent fluxes using the flux-variance method over an alpine meadow surface in the eastern Tibetan Plateau[J]. Adv Atmos Sci, 2013, 30(2): 411-424.
[32]李国平, 徐琪. 边界层动力"抽吸泵" 对青藏高原低涡的作用[J]. 大气科学, 2005, 29(6): 965-972.
[33]Niu K, Choler P, Zhao B, et al. The allometry of reproductive biomass in response to land use in Tibetan alpine grasslands[J]. Functional Ecology, 2009, 23(2): 274-283.
[34]徐安伦, 李建, 孙绩华, 等. 青藏高原东南缘大理地区近地层微气象特征及能量交换分析[J]. 高原气象, 2013, 32(1): 9-22, doi: 10.7522/j.issn.1000-0534.00002.
[35]王少影, 张宇, 吕世华, 等. 玛曲高寒草甸地表辐射与能量收支的季节变化[J]. 高原气象, 2012, 31(3): 605-614.
[36]Foken T, Wichura B. Tools for quality assessment of surface-based flux measurements[J]. Agricultural and Forest Meteorology, 1996, 78(1): 83-105.
[37]孙俊, 胡泽勇, 陈学龙, 等. 黑河中上游不同下垫面动量总体输送系数和地表粗糙度对比分析[J]. 高原气象, 2012, 31(4): 920-926.
[38]李英, 李跃清, 赵兴炳. 青藏高原东部与成都平原大气边界层对比分析Ⅱ: 近地层湍流特征[J].高原山地气象研究, 2008, 28(3): 8-14.
[39]Zhou M Y, Yao W Q, Xu X D, et al. Vertical dynamic and thermodynamic characteristics of urban lower boundary layer and its relationship with aerosol concentration over Beijing[J]. 中国科学(D辑), 2005, 48(增刊2): 25-37.
[40]苏红兵, 洪钟祥. 北京城郊近地层湍流实验观测[J]. 大气科学, 1994, 18(3): 739-750.
[41]Katul G, Goltz S M, Hsieh C I, et al. Estimation of surface heat and momentum fluxes using the flux-variance method above uniform and non-uniform terrain[J]. Bound-Layer Meteor, 1995, 74(3): 237-260.
[42]Choi T, Hong J, Kim J, et al. Turbulent exchange of heat, water vapor, and momentum over a Tibetan prairie by eddy covariance and flux variance measurements[J]. J Geophys Res, 2004, 109, D21106, doi: 10.1029/2004JD004767.
[43]Gao Zhiqiu, Bian Lingen, Chen Zhigang, et al. Turbulent Variance Characteristics of Temperature and Humidity over a Non-uniform Land Surface for an Agricultural Ecosystem in China[J]. Adv Atmos Sci, 2006, 23(3): 365-374.
[44]Ohtaki E. On the similarity in atmospheric fluctuations of carbon dioxide, water vapor and temperature over vegetated fields[J]. Bound-Layer Meteor, 1985, 32(1): 25-37.
[45]Cava D, Katul G, Sempreviva A M, et al. On the anomalous behaviour of scalar flux-variance similarity functions within the canopy sub-layer of a dense alpine forest[J]. Bound-Layer Meteor, 2008, 128(1): 33-57.
[46]Fang J Y, Fei S L. Carbon cycle in the arctic terrestrial ecosystems in relation to the global warming[J]. Acta Sci Circ, 1998, 18(2): 113-121.