Influence of Surface Roughness on Surface-Air Fluxes in Alpine Meadow over the Northern Qinghai-Xizang Plateau

  • YANG Yaoxian ,
  • LI Maoshan ,
  • HU Zeyong ,
  • Renqing Muchi ,
  • Gongjue Dunzhu ,
  • WANG Yu ,
  • HUANG Rong ,
  • SUN Genhou
Expand
  • Key Laboratory for Land Process and Climate Change in Cold and Arid Regions, Cold and Arid Region Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou 730000, China;2. University of Chinese Academy of Sciences, Beijing 100049, China;3. Nagri Meteorological Bureau, Nagri 859000, China;4. Nagqu Meteorological Bureau, Nagqu 852000, China

Received date: 2013-06-08

  Online published: 2014-06-28

Abstract

Using turbulent data and AWS data during observational period in 2012 at Nagqu Station of Plateau Climate and Environment, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences. Through an independent method to determine aerodynamic roughness and two schemes for thermal roughness and excess resistance to get their dynamic change laws, the result shows that the aerodynamic roughness has a dynamic change on the particular time scale(monthly-seasonal). However, the thermal roughness has not only a seasonal change, but also it has different diurnal changes on the period of pre-monsoon, monsoon season and post-monsoon. Then, combing CoLM and coupling the surface parameters into CoLM, the control and sensitive numerical model were conducted. The result shows that the change of aerodynamic roughness and improvement of parameterization scheme for thermal roughness, evaluates modeling property, which makes the simulated surface fluxes closer to the observed surface fluxes.

Cite this article

YANG Yaoxian , LI Maoshan , HU Zeyong , Renqing Muchi , Gongjue Dunzhu , WANG Yu , HUANG Rong , SUN Genhou . Influence of Surface Roughness on Surface-Air Fluxes in Alpine Meadow over the Northern Qinghai-Xizang Plateau[J]. Plateau Meteorology, 2014 , 33(3) : 626 -636 . DOI: 10.7522/j.issn.1000-0534.2013.00199

References

[1]任军芳, 苏炳凯, 赵鸣. 标量粗糙度对地气交换的影响[J]. 大气科学, 1999, 23(3): 349-358.
[2]贾立, 王介民, 胡泽勇. 干旱区热力学粗糙度特征及对感热通量估算的影响[J]. 高原气象, 2000, 19(4): 495-503.
[3]陈家宜, 王介民, 光田宁. 一种确定地表粗糙度的独立方法[J]. 大气科学, 1993, 17(1): 21-26.
[4]Yang Kun, Koike Toshio, Ishikawa Hirohiko, et al. Turbulent Flux Transfer over Bare-Soil Surfaces: Characteristics and Parameterization[J]. J Appl Meteor Climatol, 2007, 47: 276-290, doi:10.1175/2007JAMC1547.1.
[5]马耀明, 塚本修, 王介民, 等. 青藏高原草甸下垫面上的动力学和热力学参数分析[J]. 自然科学进展, 2001, 11(8): 824-828.
[6]李锁锁, 吕世华, 柳媛普, 等. 黄河上游玛曲地区空气动力学参数的确定及其在陆面过程模式中的应用[J]. 高原气象, 2010, 29(6): 1408-1413.
[7]尚伦宇, 吕世华, 张宇, 等. 青藏高原东部土壤冻融过程中地表粗糙度的确定[J]. 高原气象, 2010, 29(1): 17-22.
[8]Chen Y Y, Yang K, Zhou D G, et al. Improving the Noah Land Surface Model in arid regions with an appropriate parameterization of the thermal roughness length[J]. J Hydrometeor, 2010, 11: 995-1006, doi: 10.1175/2010JHM1185.1.
[9]郑度, 李炳元. 青藏高原地理环境研究进展[J]. 地理科学, 1999, 19(4): 295-302.
[10]吴晓鸣, 马伟强, 马耀明. 夏季藏北高原地表热通量特征观测与模拟[J]. 高原气象, 2013, 32(5): 1246-1252, doi: 10.7522/j.issn.1000-0534.2013.00082.
[11]王介民. 陆面过程实验和地气相互作用研究—从HEIFE到IMGRASS 和GAME-Tibet/ TIPEX[J]. 高原气象, 1999, 18(3): 280-294.
[12]Numaguti Atusi, Liu Liping, Tian Lide. Proceedings of the 1<sup>st</sup> International Workshop on GAME2 Tibet[C]. Chinese Academy of Sciences and Japanese National Committee for GAME, Xi’an, China, 11-13 January 1999: 69-81, 99-102.
[13]Ma Yaoming, Tsukamoto Osamu, Wang Jiemin, et al. Analysis of aerodynamic and thermodynamic parameters on the grassy marshland surface of Tibetan Plateau[J]. Progress in Natural Science, 2002, 12: 36-40.
[14]马耀明, 马伟强, 胡泽勇, 等. 藏北高原草甸下垫面湍流强度相似性分析[J]. 高原气象, 2002, 21(5): 514-517.
[15]马耀明, 姚檀栋, 王介民. 青藏高原能量和水循环试验研究-GAME/Tibet与CAMP/Tibet 研究进展[J]. 高原气象, 2006, 25(2): 344-351.
[16]李茂善, 马耀明, 胡泽勇, 等. 藏北高原那曲地区边界层结构初步分析[J]. 高原气象, 2004, 23(5): 728-732.
[17]陈学龙, 马耀明, 李茂善, 等. 藏北地区近地层大气和土壤特征量分析[J]. 高原气象, 2008, 27(5): 941-948.
[18]Li M, Babel W, Tanaka K, et al. Note on the application of planar-fit rotation for non-omnidirectional sonic anemometers[J]. Atmospheric Measurements Techniques Discussions, 2012, 5(5): 7323-7340, doi: 10.5194/amtd-5-7323-2012.
[19]李茂善, 杨耀先, 马耀明, 等. 纳木错(湖)地区湍流数据质量控制和湍流通量变化特征[J]. 高原气象, 2012, 31(4): 875-884.
[20]王超. 敦煌戈壁气象塔站资料的质量控制[J]. 干旱气象, 2010, 28(2): 121-127.
[21]Mauder M, Foken T. Documentation and instruction manual of the eddy covariance software package TK2[R]. Work Report University of Bayreuth, Dept. of Micrometeorology, University of Bayreuth, 2004: 42.
[22]Vickers D, Mahrt L. Quality control and flux sampling problem for tower and aircraft data[J]. J Atmos Ocean Technol, 1997, 14: 512-526.
[23]Wilzack J M, Oncley S P, Stage S A. Sonic anemometer tilt correction algorithms[J]. Bound-Layer Meteor, 2001, 99: 127-150.
[24]Moore C J. Frequency response correction for eddy correlation systems[J]. Bound-Layer Meteor, 1986, 37: 17-35.
[25]Schotanus P, Nieuwstadt F T M, Debruin Har. Temperature measurement with a sonic anemometer and its application to heat and moisture fluxes[J]. Bound-Layer Meteor, 1983, 26: 81-93.
[26]Liu H P, Peters G, Foken T. New equations for sonic temperature variance and buoyancy heat flux with an omnidirectional sonic anemometer[J]. Bound-Layer Meteor, 2001, 100: 459-468.
[27]Webb E K, Pearman G I, Leuning R. Correction of flux measurements for density effects due to heat and water-vapor transfer[J]. Quart J Roy Meteor Soc, 1980, 106: 85-100, doi: 10.1002/qj.49710644707.
[28]Fuehrer P L, Friehe C A. Flux corrections revisited[J]. Bound-Layer Meteor, 2002, 102: 415-457.
[29]Liebethal C, Foken T. On the significance of the Webb correction to fluxes[J]. Bound-Layer Meteor, 2003, 109: 99-106.
[30]Rebmann C, Gckede M, Foken T, et al. Quality anlysis applied on eddy covariance measurements at complex forest sites using footprint modeling[J]. Theor Appl Climatol, 2005, 80: 121-141. doi: 10.1007/s00704-004-0095-y.
[31]Foken T, Wichura B. Tools for quality assessment of surface-based flux measurements[J]. Agricul Forest Meteor, 1996, 78: 83-105.
[32]Thomson D J. Criteria for the selection of stochastic models of particle trajectories in turbulent flows[J]. Journal of Fluid Mechanics, 1987, 180: 529-556.
[33]Monin A S, Obukhov A M. Basic laws of turbulent mixing in the atmosphere near the ground[J]. Tr Akad Nauk SSSR Geofiz Inst, 1954, 24(15): 163-187.
[34]Panosky H A, Dutton J A. Atmospheric Turbulence: Models and Methods for Engineering Applications[M]. New York: John Wiley, 1984: 39.
[35]Beljaars A C M, Holtslag A A M. Flux parameterization over land surfaces for atmospheric models[J]. J Appl Meteor, 1991, 30: 327-341.
[36]王树舟. 青藏高原不同下垫面地气交换参数的观测研究[D]. 北京: 中国科学院青藏高原研究所, 2009: 30.
[37]Owen P R, Thomson W R. Heat transfer across rough rough surfaces[J]. J Appl Meteor, 1963, 9: 857-861.
[38]Zeng X, Dickinson R E. Effect of surface sublayer on surface skin temperature and fluxes[J]. J Climate, 1998, 11: 537-550.
[39]Hgstrm U. Review of some basic characteristics of the atmospheric surface layer[J]. Bound-Layer Meteor, 1996, 78: 215-246.
[40]Paulson C A. The mathematical representation of wind speed and temperature profiles in the unstable atmospheric layer[J]. J Appl Meteor, 1970, 9: 857-861.
[41]徐淑英, 高由禧. 西藏高原的季风现象[J]. 地理学报, 1962, 28(2): 111-123.
[42]Dai Y J, Dickinson R E, Wang Y. A two-big-leaf model for canopy temperature, photosynthesis and stomatal conductance[J]. J Climate, 2004, 17: 2281-2299.
[43]Dai Y J, Ji D Y. The Common Land Model User &amp; Developer's Guide [R/OL]. http://globalchange.bnu.edu.cn, 2007-09.
[44]Dai Y J, Zeng X B, Dickinson R E, et al. The common land model[J]. Bull Amer Meteor Soc, 2003, 84 (8): 1013-1023, doi: 10.1175/BAMS-84-8-1013.
[45]王澄海, 师锐. 青藏高原西部陆面过程特征的模拟分析[J]. 冰川冻土, 2007, 29(1): 73-81.
[46]Gao Z Q, Chae N, Kim J, et al. Modeling of surface energypartitioning, surface temperature and soil wetness in the Tihetan prairie using the Simple Biosphere Model 2(SiB2)[J]. J Geophys Res, 2004, 109, D06102, doi: 10.1029/2003JD004089.
Outlines

/