[1]Zhao T B, Fu C B. Comparison of products from ERA40 NCEP2 and CRU with station data for summer precipitation over China[J]. Adv Atmos Sci, 2006, 23(4): 593-604.
[2]李瑞青, 吕世华, 韩博, 等. 青藏高原东部三种再分析资料与地面气温观测资料的对比分析[J]. 高原气象, 2012, 31(6): 1488-1502.
[3]赵天保, 符淙斌. 应用探空观测资料评估几类再分析资料在中国区域的适用性[J]. 大气科学, 2009, 33(3): 634-648.
[4]赵天保, 符淙斌. 几种再分析地表气温资料在中国区域的适用性评估[J]. 高原气象, 2009, 28(3): 594-505.
[5]王毅荣. 黄土高原气候系统的基本特征[J]. 甘肃农业, 2004, 7: 12-13.
[6]Wen J, Wang L, Wei Z G. An overview of the Loess Plateau mesa region land surface process field experiment series(LOPEXs)[J]. Hydrol Earth Syst Sci, 2009, 13: 945-951.
[7]李耀辉, 韩涛. 基于EOS/MODIS 资料的中国黄土高原西部土地覆盖分类[J]. 高原气象, 2008, 27(3): 538-543.
[8]Zhang J T, Ru W M, Li B. Relationships between vegetation and climate on the Loess Plateau in China[J]. Folia Geobotanica, 2006, 41: 151-163.
[9]王毅荣. 黄土高原秋季气候对全球增暖的暖干化区域响应[J]. 高原气象, 2008, 27(1): 104-112.
[10]韦志刚, 文军, 吕世华, 等.黄土高原陆—气相互作用预试验及其晴天地表能量特征分析[J]. 高原气象, 2005, 24(4): 545-555.
[11]王兴, 张强, 王胜. 中国黄土高原半湿润地区陆面温、 湿特性及辐射收支特征研究[J]. 高原气象, 2013, 32(5): 1272-1279, doi: 10.7522/j.issn.1000-0534.2013.00058.
[12]Fan S J, Fan Q, Yu W, et al. Atmospheric boundary layer characteristics over the Pearl River Delta, China during summer 2006: measurement and model results[J]. Atmospheric Chemistry and Physics Discussions, 2011, 11(2): 4807-4842.
[13]董俊玲, 韩志伟, 张仁健, 等. WRF 模式对中国城市和半干旱地区气象要素的模拟检验和对比分析[J]. 气象科学, 2011, 31(4): 484-492.
[14]张宇, 郭振海, 张文煜, 等. 中尺度模式不同分辨率下大气多尺度特征模拟能力分析[J]. 大气科学, 2010, 34(3): 653-660.
[15]Ruiz J J, Saulo C, Nogués-Paegle J. WRF model sensitivity to choice of parameterization over south america: Validation against surface variables[J]. Mon Wea Rev, 2010, 138(8): 3342-3355.
[16]王腾蛟, 张镭, 胡向军, 等. WRF模式对黄土高原丘陵地形条件下夏季边界层结构的数值模拟[J]. 高原气象, 2013, 32(5): 1261-1271, doi: 10.7522/j.issn.1000-0534.2012.00121.
[17]Wilby R L, Dawson C W, Barrow E M. SDSM—A decision support tool for the assessment of regional climate change impacts[J]. Environmental Modelling & Software, 2002, 17(2): 145-157.
[18]Hong S Y, Noh Y, Dudhia J. A new vertical diffusion package with an explicit treatment of entrainment processes[J]. Mon Wea Rev, 2006, 134(9): 2318-2341.
[19]Dyer A J, Hicks B B. Flux-gradient relationships in the constant flux layer[J]. Quart J Roy Meteor Soc, 1970, 96(410): 715-721.
[20]Beljears A. The parametrization of surface fluxes in large-scale models under free convection[J]. Quart J Roy Meteor Soc, 1995, 121(522): 255-270.
[21]Chen F, Dudhia J. Coupling an advanced land surface-hydrology model with the Penn State-NCAR MM5 modeling system. Part I: Model implementation and sensitivity[J]. Mon Wea Rev, 2001, 129(4): 569-585.
[22]Kain J S. The Kain-Fritsch convective parameterization: An update[J]. J Appl Meteor, 2004, 43(1): 170-181.
[23]Mlawer E J, Taubman S J, Brown P D, et al. Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave[J]. J Geophys Res: Atmospheres (1984-2012), 1997, 102(D14): 16663-16682.
[24]Dudhia J. Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model[J]. Atmos Sci, 1989, 46: 3077-3107.
[25]Lin Y L, Farley R D, Orville H D. Bulk parameterization of the snow field in a cloud model[J]. J Climate Appl Meteor, 1983, 22(6): 1065-1092.
[26]Hong S Y, Dudhia J, Chen S H. A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation[J]. Mon Wea Rev, 2004, 132(1): 103-120.
[27]刘蓉, 文军, 张堂堂, 等. 利用 MERIS和AATSR 资料估算黄土高原塬区蒸散发量研究[J]. 高原气象, 2008, 27(5): 949-955.
[28]韦志刚, 文军, 吕世华, 等. 黄土高原陆-气相互作用预试验及其晴天地表能量特征分析[J]. 高原气象, 2005, 24(4): 545-555.
[29]Hogrefe C, Rao S T, Kasibhatla P, et al. Evaluating the performance of regional-scale photochemical modeling systems: Part II-Ozone predictions[J]. Atmos Environ, 2001, 35(24): 4175-4188.
[30]Zhong S, Fast J. An evaluation of the MM5, RAMS, and Meso-Eta models at subkilometer resolution using VTMX field campaign data in the Salt Lake Valley[J]. Mon Wea Rev, 2003, 131(7): 1301-1322.
[31]Jiménez P A, Dudhia J. Improving the representation of resolved and unresolved topographic effects on surface wind in the WRF model[J]. J Appl Meteor Climatol, 2012, 51(2): 300-316.
[32]Niemel? S, R?is?nen P, Savij?rvi H. Comparison of surface radiative flux parameterizations, Part I: Longwave radiation[J]. Atmos Res, 2001, 58(1): 1-18.
[33]Guichard F, Parsons D B, Dudhia J, et al. Evaluating mesoscale model predictions of clouds and radiation with SGP ARM data over a seasonal timescale[J]. Mon Wea Rev, 2003, 131(5): 926-944.
[34]Steeneveld G J, Tolk L F, Moene A F, et al. Confronting the WRF and RAMS mesoscale models with innovative observations in the Netherlands: evaluating the boundary layer heat budget[J]. J Geophys Res: Atmospheres (1984-2012), 2011, 116(D23): 1-16.
[35]张强, 张杰, 乔娟, 等. 我国干旱区深厚大气边界层与陆面热力过程的关系研究[J]. 中国科学: 地球科学, 2011, 41(9): 1365-1374, doi: 10.1007/s11430-011-4207-0.
[36]Delle Monache L, Perry K D, Cederwall R T, et al. In situ aerosol profiles over the Southern Great Plains cloud and radiation test bed site: 2. Effects of mixing height on aerosol properties[J]. J Geophys Res: Atmospheres (1984-2012), 2004, 109(D6): 1-9.
[37]Liu H Z, Zhang H S, Bian L G, et al. Characteristics of micrometeorology in the surface layer in the Tibetan Plateau[J]. Adv Atmos Sci, 2002, 19(1): 73-88.
[38]Hu X M, Nielsen-Gammon J W, Zhang F. Evaluation of three planetary boundary layer schemes in the WRF model[J]. J Appl Meteor Climatol, 2010, 49(9): 1831-1844.
[39]Sorbjan Z. Improving non-local parameterization of the convective boundary layer[J]. Bound-Layer Meteor, 2009, 130(1): 57-69.