Numerical Simulations of the Extraordinary Rainstorm by Typhoon Nesat

  • YANG Renyong ,
  • MIN Jinzhong ,
  • ZHENG Yan
Expand
  • College of Atmospheric Sciences, Nanjing University of Information Science & Technology, Nanjing 210044, China;2. Meteorological Observatory of Hainan Province, Haikou 570203, China

Received date: 2012-10-24

  Online published: 2014-06-28

Abstract

Numerical simulation and terrain sensitivity experiments on the heavy rainfall caused by the typhoon Nesat during 29-30 September 2011 were studied using the weather and research forecast(WRF) model when Nesat made the landfall and went through the north Hainan Island. The results show that: The rainfall caused by the westing typhoon landfall on the north area distributed more in the north than the south. In the north, there is more rain in the west area than east area. 48 h and 3 h accumulative rainfall from the 12 km experiment are successfully modeled and the landing time and location is close to the observed. The typhoon track and intensity are good simulated as well. The terrain sensitivity experiment shows that 24 h precipitation from the experiments with terrain have increased generally by more than 50 mm in the west area in Hainan Island. Increase of more than 150 mm has been observed in the western mountainous regions, with 350 mm increase in the north part of the main peak. Heavy precipitation center is found responding to main mountain peak, It proves that, the terrain can result in general obvious rainfall increase in typhoon. However, there is a 50~150 mm rainfall reduction in the eastern coast of the island due to the block from the Wuzhishan Mountain. Analysing the comparison of low-level mesoscale flow field and the vertical velocity, significant difference can be found between control experiments and experiment with none terrain. The Wuzhishan terrain can enhance low-level disturbances, which can easily produce the vortex of mesoscale convection (MCS), then by increasing the typhoon rainfall. The special terrain of Wangxia plays an important role in increasing the typhoon rainfall.

Cite this article

YANG Renyong , MIN Jinzhong , ZHENG Yan . Numerical Simulations of the Extraordinary Rainstorm by Typhoon Nesat[J]. Plateau Meteorology, 2014 , 33(3) : 753 -761 . DOI: 10.7522/j.issn.1000-0534.2013.00047

References

[1]陈联寿, 孟智勇. 我国热带气旋研究十年进展[J]. 大气科学, 2001, 25(3): 420-432.
[2]陈联寿, 徐祥德, 王继志. 热带气旋动力学引论[M]. 北京: 气象出版社, 2002: 317.
[3]郑庆林, 吴军. 我国东南海岸线分布9216号台风暴雨增幅影响的数值研究[J]. 热带气象学报, 1996, 12(4): 304-313.
[4]孟智勇, 徐祥德, 陈联寿. 台湾岛地形诱生次级环流系统对热带气旋异常运动的影响机制[J]. 大气科学, 1998, 22(2): 156-168.
[5]冀春晓, 薛根元, 赵放, 等. 台风Rananim登陆期间地形对其降水和结构影响的数值模拟试验[J]. 大气科学, 2001, 21(2): 233-244.
[6]Wu C C, Yen T H, Kuo Y H, et al. Rainfall simulation associated with typhoon Herb(1996) near Taiwan. Part I: The topographic effect[J]. Wea Forecasting, 2002, 17(5): 1001-1015.
[7]段丽, 陈联寿. 热带风暴"菲特"(0114)特大暴雨的诊断研究[J]. 大气科学, 2005, 29(3): 343-353.
[8]徐国强, 梁旭东, 余晖, 等. 不同云降水方案对一次登陆台风的降水模拟[J]. 高原气象, 2007, 26(5): 891-900.
[9]杨文霞, 冉令坤, 洪延超, 等. 新动力因子在登陆台风与降水移动中的诊断研究[J]. 高原气象, 2010, 29(2): 373-383.
[10]Tuleya R E. Tropical storm development and decay: Sensitivity to surface boundary conditions[J]. Mon Wea Rev, 1994, 122(2): 291-304.
[11]Powell M D, Houston S H. Surface wind fields of 1995 hurricanes Erin, Opal, Luis, Marilyn and Roxanne at landfall[J]. Mon Wea Rev, 1998, 126(5): 1259-1273.
[12]袁金南, 黄燕燕, 刘春霞, 等. 陆地摩擦对登陆热带气旋路径和强度影响的模拟研究[J]. 热带气象学报, 2007, 23(6): 531-537.
[13]马玉芬, 沈桐立, 丁治英, 等. 台风"桑美"的数值模拟和地形敏感性试验[J]. 南京气象学院学报, 2009, 32(2): 277-286.
[14]李强, 李永华, 周锁铨, 等. 基于WRF模式的三峡地区局地下垫面效应的数值试验[J]. 高原气象, 2011, 30(1): 83-93.
[15]赵玉春, 许小峰, 崔春光. 中尺度地形对梅雨锋暴雨影响的个例研究[J]. 高原气象, 2012, 31(5): 1268-1282
[16]董美莹, 陈联寿. 地形影响热带气旋"泰利"降水增幅的数值研究[J]. 高原气象, 2011, 30(3): 700-710.
[17]陈联寿. 热带气旋研究和业务预报技术的发展[J]. 应用气象学报, 2006, 17(6): 672-681.
[18]李强, 刘德, 王中, 等. 一次台风远距离作用下的西南低涡大暴雨个例分析[J]. 高原气象, 2013, 32(3): 718-727, doi: 10.7522/j.issn.1000-0534.2012.00067.
[19]程正泉, 林良勋, 刘燕, 等. 粤东台风"浣熊"大暴雨的散度风动能分析[J]. 高原气象, 2014, 33(2): 557-566, doi: 10.7522/j.issn.1000-0534.2013.00019.
Outlines

/