Relationship between Narrow Bipolar Events and Radar Echo in Southwest China

  • LIU Shasha ,
  • DONG Wansheng ,
  • WU Ting ,
  • LIU Hengyi
Expand
  • Chinese Academy of Meteorological Sciences, China Meteorological Administration, Beijing 100081, China;2. Division of Electrical, Electronic and Information Engineering, Graduate School of Engineering, Osaka University, Osaka 565-0871, Japan

Received date: 2013-07-24

  Online published: 2014-06-28

Abstract

A very low frequency and low frequency (VLF/LF) lightning location network has been established since 2010 in the southwestern Chinese city of Chongqing, which consists of 11 stations of fast electric field change meters. Using this system, the distinct class of intracloud lightning discharges named NBEs (Narrow Bipolar Events) are recorded. Six thunderstorm cases are used to analyze the relationship between NBEs and thunderstorm convective strength. Every storm produced NBEs of both polarities, and one of them produced more negative NBEs than positive ones, which is a very rare case. Our study statistically compare NBEs rates to the Doppler radar-inferred proxies of convective strength. It is concluded that although NBE rates show much weaker dependence on the volume of 40 dBZ radar reflectivity (V40) than ordinary lightning, they increase rapidly with the increased V40 and largely occur in high V40 area, especially for negative NBEs. The spatiotemporal relation of positive and negative NBEs to thunderstorm convection is also investigated. Compared with positive NBEs, the negative NBEs cluster more closely in time and space, they generally occur in the strongest development stage of the thunderstorm, largely clustering at the cloud top of the core of deepest convection. It seems that a very vigorous thunderstorm tends to produce more negative NBEs. Positive NBEs are scattered around the convective cores. These results indicate that negative NBEs are closely related to the deep convection, which is useful and meaningful to indicate thunderstorm convective strength.

Cite this article

LIU Shasha , DONG Wansheng , WU Ting , LIU Hengyi . Relationship between Narrow Bipolar Events and Radar Echo in Southwest China[J]. Plateau Meteorology, 2014 , 33(3) : 801 -810 . DOI: 10.7522/j.issn.1000-0534.2013.00178

References

[1]Le Vine D M. Sources of the strongest RF radiation from lightning[J]. J Geophys Res, 1980, 85(C7): 4091-4095.
[2]Willett J C, Bailey J C, Krider E P. A class of unusual lightning electric field waveforms with very strong high-frequency radiation[J]. J Geophys Res, 1989, 94(D13): 16255-16267.
[3]Smith D A, Shao X M, Holden D N, et al. A distinct class of isolated intracloud lightning discharges and their associated radio emissions[J]. J Geophys Res, 1999, 104(D4): 4189-4212.
[4]刘恒毅, 董万胜, 张义军, 等. 负地闪不规则脉冲簇事件的宽带干涉仪三维观测[J]. 高原气象, 2013, 32(4): 1186-1194, doi: 10.7522/j.issn.1000-0534.2012.00111.
[5]张义军, 言穆弘, 张翠华, 等. 甘肃平凉地区正地闪特征分析[J]. 高原气象, 2003, 22(3): 295-300.
[6]董万胜, 刘欣生, 张义军, 等. 云闪放电通道发展及其辐射特征[J]. 高原气象, 2003, 22(3): 221-225.
[7]郄秀书, 余晔, 王怀斌, 等. 中国内陆高原地闪特征的统计分析[J]. 高原气象, 2001, 20(4): 395-401.
[8]祝宝友, 陶善昌, 谭涌波. 伴随超强 VHF 辐射的闪电双极性窄脉冲初步观测[J]. 气象学报, 2007, 65(1): 124-130.
[9]吴亭, 董万胜, 刘恒毅. 双极性窄脉冲电场波形特征[J]. 高原气象, 2011, 30(3): 823-830.
[10]Liu H, Dong W, Wu T, et al. Observation of compact intracloud discharges using VHF broadband interferometers[J]. J Geophys Res, 2012, 117(D1): D01203, doi: 10.1029/2011JD06185.
[11]Jacobson A R. How do the strongest radio pulses from thunderstorms relate to lightning flashes?[J]. J Geophys Res, 2003, 108(D24): 4778, doi: 10.1029/2003jd003936.
[12]蓝渝, 张义军, 吕伟涛, 等. 0.1~ 40 MHz 地闪、 云闪及 NBE 事件的辐射场频谱特征分析[J]. 高原气象, 2009, 28(5): 1025-1033.
[13]Suszcynsky D M, Heavner M J. Narrow bipolar events as indicators of thunderstorm convective strength[J]. Geophy Res Lett, 2003, 30(17): 1879-1883.
[14]Shao X M, Stanley M, Regan A, et al. Total lightning observations with the new and improved Los Alamos Sferic Array (LASA)[J]. J Atmos Oceanic Technol, 2006, 23(10): 1273-1288.
[15]Fierro A O, Shao X M, Hamlin T, et al. Evolution of eyewall convective events as indicated by intracloud and cloud-to-ground lightning activity during the rapid intensification of hurricanes Rita and Katrina[J]. Mon Wea Rev, 2011, 139(5): 1492-1504, doi: 10.1175/2010MWR3532.1.
[16]Wiens K C, Hamlin T, Harlin J, et al. Relationships among narrow bipolar events, ‘total’ lightning, and radar-inferred convective strength in Great Plains thunderstorms[J]. J Geophys Res, 2008, 113(D05201): 5201-5231.
[17]Lang T J, Rutledge S A. Relationships between convective storm kinematics, precipitation, and lightning[J]. Mon Wea Rev, 2002, 130(10): 2492-2506.
[18]Williams E, Boldi B, Matlin A, et al. The behavior of total lightning activity in severe Florida thunderstorms[J]. Atmos Res, 1999, 51(3): 245-265.
[19]Jacobson A R, Heavner M J. Comparison of narrow bipolar events with ordinary lightning as proxies for severe convection[J]. Mon Wea Rev, 2005, 133(5): 1144-1154.
[20]Lapp J L, Saylor J R. Correlation between lightning types[J]. Geophys Res Lett, 2007, 34(11), doi: 10.1029/2007GL029476.
[21]祝宝友, 吕凡超, 马明, 等. 东北地区雷暴中 NBE 活动特征的初步观测结果[R]. 第 28 届中国气象学会年会-S13 雷电物理、 监测预警和防护, 2011.
[22]Lü F, Zhu B, Zhou H, et al. Observations of compact intracloud lightning discharges in the northernmost region (51° N) of China[J]. J Geophy Res: Atmospheres, 2013, 118(10): 4458-4465, doi: 10.1002/jgrd.50295.
[23]Wu T, Takayanagi Y, Yoshida S, et al. Spatial relationship between lightning narrow bipolar events and parent thunderstorms as revealed by phased array radar[J]. Geophys Res Lett, 2013, 40(3): 618-623, doi: 10.1002/grl.50112.
[24]Wu T, Dong W, Zhang Y, et al. Comparison of positive and negative compact intracloud discharges[J]. J Geophys Res, 2011, 116(D3), doi: 10.1029/2010JD015233.
[25]吴亭, 董万胜, 李良福, 等. 基于电离层反射的袖珍云闪(CID)三维定位研究[J]. 地球物理学报, 2012, 55(4): 1095-1103.
[26]肖艳姣, 刘黎平. 新一代天气雷达网资料的三维格点化及拼图方法研究[J]. 气象学报, 2006, 64(5): 647-657.
[27]王红艳, 刘黎平, 王改利. 多普勒天气雷达三维数字组网系统开发及应用[J]. 应用气象学报, 2009, 20(2): 214-224.
[28]Williams E R. The electrification of severe storms[J]. Meteorological Monographs, 2001, 28: 527-528.
[29]Gilmore M S, Wicker L J. Influences of the local environment on supercell cloud-to-ground lightning, radar characteristics, and severe weather on 2 June 1995[J]. Mon Wea Rev, 2002, 130(10): 2349-2372.
[30]Carey L D, Petersen W A, Rutledge S A. Evolution of cloud-to-ground lightning and storm structure in the Spencer, South Dakota, tornadic supercell of 30 May 1998[J]. Mon Wea Rev, 2003, 131(8): 1811-1831.
[31]Martinez M. The relationship between radar reflectivity and lightning activity at initial stages of convective storms[R]. American Meteorological Society, 82<sup>nd</sup> Annual Meeting, First Annual Student Conference, Orlando, Florida. 2002.
[32]Vincent B R, Carey L D, Schneider D, et al. Using WSR 88D reflectivity data for the prediction of cloud to ground lightning: A central North Carolina study[J]. National Weather Digest, 2004, 27: 35-44.
[33]王飞, 张义军, 赵均壮, 等. 雷达资料在孤立单体雷电预警中的初步应用[J]. 应用气象学报, 2008, 19(2): 153-160.
[34]王飞, 董万胜, 张义军, 等. 云内大粒子对闪电活动影响的个例模拟[J]. 应用气象学报, 2009, 20(5): 564-570.
[35]Lü F, Zhu B, Ma D, et al. A case study of the temporal context of narrow bipolar events with ordinary lightning[C]. Electromagnetic Compatibility (APEMC), 2010 Asia-Pacific Symposium on IEEE, 2010: 1235-1238.
[36]Lü F C, Zhu B Y, Ma M, et al. Observations of narrow bipolar events during two thunderstorms in Northeast China[J]. Science China Earth Sciences, 2013, 56(8): 1459-1470, doi: 10.1007/s11430-012-4484-2.
[37]Carey L D, Rutledge S A. A multiparameter radar case study of the microphysical and kinematic evolution of a lightning producing storm[J]. Meteor Atmos Phys, 1996, 59(1-2): 33-64.
[38]张义军, 言穆弘, 刘欣生. 雷暴中放电过程的模式研究[J]. 科学通报, 1999, 44(12): 1322-1325.
[39]Ziegler C L, MacGorman D R. Observed lightning morphology relative to modeled space charge and electric field distributions in a tornadic storm[J]. J Atmos Sci, 1994, 51(6): 833-851.
[40]冯桂力, 郄秀书, 袁铁, 等. 次冷涡天气系统中雹暴过程的地闪特征分析[J]. 气象学报, 2006, 64(2): 211-220.
[41]Wu T, Dong W, Zhang Y, et al. Discharge height of lightning narrow bipolar events[J]. J Geophys Res, 2012, 117(D5), doi: 10.1029/2011JD017054.
[42]武斌, 张广庶, 王彦辉, 等. 双接地负地闪VHF辐射源放电通道和光学通道的对比分析[J]. 高原气象, 2013, 32(2): 519-529, doi: 10.7522/j.issn.1000-0534.2012.00049.
[43]Freier G D. Time-dependent fields and a new mode of charge generation in severe Thunderstorms[J]. J Atmos Sci, 1979, 36: 1967-1975.
[44]Riousset J A, Pasko V P, Krehbiel P R, et al. Modeling of thundercloud screening charges: Implications for blue and gigantic jets[J]. J Geophys Res, 2010, 115(A1), doi: 10.1029/2009JA014286.
Outlines

/