Analysis of Physical Factor of Sensible Heat Flux by LAS over Loess Plateau

  • HAO Xiaocui ,
  • ZHANG Qiang ,
  • YUE Ping ,
  • YANG Zesu
Expand
  • Institute of Arid Meteorology, China Meteorological Administration/Key laboratory of Arid Climatic Change and Reducing Disaster of Gansu Province/Key Open Laboratory of Arid Climatic Change and Disaster Reduction of China Meteorological Administration, Lanzhou 730020, China;2. Northwest Regional Climate Center, Lanzhou 730020, China;3. College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China

Received date: 2012-08-23

  Online published: 2014-08-28

Abstract

On the basis of sensible heat flux data observed by Large Aperture Scintillometer (LAS) and Eddy Covariance system (EC) at Dingxi and Qingyang site for the periods of January and June 2010, the spatial and temporal differences between LAS and EC observed sensible heat flux was analyzed. Combined with radiation observing system, gradient tower and so on, the ways how the differences of LAS and EC observed sensible heat flux influenced by net radiation, wind direction, wind speed and stability was explored. The results show that the difference of sensible heat flux by LAS and EC is related to the heterogeneity of underlying surface with the difference more obvious over the more complicated underlying surface. Net radiation Rn is the main driving factor to sensible heat flux. The value of HLAS-HEC in the growing season is greater than the value in the non-growing season and positively correlated with Rn. Wind direction has a significant effect on sensible heat flux by LAS and EC. The presence of low-frequency volution in convective boundary layer issues in lower flux statistics to EC, which results in that: HLAS/HEC decreases with the increasing of wind speed and increases with the increasing of z/L.

Cite this article

HAO Xiaocui , ZHANG Qiang , YUE Ping , YANG Zesu . Analysis of Physical Factor of Sensible Heat Flux by LAS over Loess Plateau[J]. Plateau Meteorology, 2014 , 33(4) : 957 -966 . DOI: 10.7522/j.issn.1000-0534.2013.00042

References

[1]张强, 王胜. 关于黄土高原陆面过程及其观测试验研究[J]. 地球科学进展, 2008, 23(2): 167-173.
[2]张强, 胡向军, 王胜, 等. 黄土高原陆面过程试验研究( LOPEX )有关科学问题[J]. 地球科学进展, 2009, 24(4): 363-371.
[3]Dickinson R E. Land-atmosphere interaction[R]. US Nation Report Internation Union of Geodesy and Geophysics 1991-1994, 1995: 917-922.
[4]彭谷亮, 蔡旭晖, 刘绍民. 大孔径闪烁仪湍流通量印痕模型的建立与应用[J]. 北京大学学报:自然科学版, 2007, 43(6): 822-827.
[5]陈继伟, 左洪超, 王介民, 等. LAS在西北干旱区荒漠均匀下垫面的观测研究[J]. 高原气象, 2013, 32(1): 56-64, doi: 10.7522/j.issn.1000-0534.2013.00007.
[6]郝小翠, 张强, 岳平, 等. 黄土高原大孔径闪烁仪观测特征量T<sup>*</sup>的研究[J]. 高原气象, 2013, 32(2): 665-672, doi: 10.7522/j.issn.1000-0534.2012.00063.
[7]Meijninger W M L, De Bruin H A R. The sensible heat fluxes over irrigated areas in western Turkey determined with a large aperture scintillometer[J]. J Hydrol, 2000, 229(1): 42-49.
[8]王维真, 徐自为, 李新, 等. 大孔径闪烁仪在黑河流域的应用分析研究[J]. 地球科学进展, 2010, 25(11): 1208-1216.
[9]Hoedjes J C B, Chehbouni A, Ezzahar J, et al. Comparison of large aperture scintillometer and eddy covariance measurements: can thermal infrared data be used to capture footprint-induced differences?[J]. J Hydrometeor, 2007, 8(2): 144-159.
[10]Randow C V, Kruijt B, Holtslag A A M, et al. Exploring eddy-covariance and large-aperture scintillometer measurements in an Amazonian rain forest[J]. Agricultural and Forest Meteorology, 2008, 148(4): 680-690.
[11]卢俐, 刘绍民, 徐自为, 等. 不同下垫面大孔径闪烁仪观测数据处理与分析[J]. 应用气象学报, 2009, 20(2): 171-178.
[12]白洁, 刘绍民, 丁晓萍. 海河流域不同下垫面上大孔径闪烁仪观测感热通量的时空特征分析[J]. 地球科学进展, 2010, 25(11): 1187-1198.
[13]Andreas E L. Estimating C<sub>n</sub><sup>2</sup> over snow and sea ice from meteorological data[J]. Journal of the Optical Society of America, 1988, 5(4): 481-495.
[14]Liu S M, Lu L, Mao D, et al. Evaluating parameterizations of aerodynamic resistance to heat transfer using field measurements[J]. Hydrology Earth System Sciences, 2007, 11(2):769-783.
[15]Brutaeart W. Evaporation into the atmosphere: theory, history, and application[M]. Dordrecht: D Reidel Publishing Co, 1982: 58.
[16]Zeweldi D A, Gebremichael M, Wang J M, et al. Intercomparison of sensible heat flux from large aperture scintillometer and eddy covariance methods: field experiment over a homogeneous semi-arid region[J]. Bound-Layer Meteor, 2010, 135(1): 151-159.
[17]McAneney K J, Green A E, Astill M S. Large aperture scintillometry: The homogeneous case[J]. Agricultural and Forest Meteorology, 1995, 76(3): 149-162.
[18]王维真, 徐自为, 刘绍民, 等. 黑河流域不同下垫面水热通量特征分析[J]. 地球科学进展, 2009, 24(7): 714-723.
[19]Liu S M, Xu Z W, Wang W Z, et al. A comparison of eddy-covariance and large aperture scintillometer measurements with respect to the energy balance closure problem[J]. Hydrology and Earth System Sciences, 2011, 15(4): 1291-1306.
[20]Mahrt L. Flux sampling errors for aircraft and towers[J]. J Atmos Oceanic Technol, 1998, 15(2): 416-429.
[21]Sakai R K, Fitzjarrald D R, Moore K E. Importance of low-frequency contributions to eddy fluxes observed over rough surfaces[J]. J Appl Meteor, 2001, 40(12): 2178-2192.
[22]Finnigan J J, Clement R, Malhi Y, et al. A reevaluation of longterm flux measurement techniques part I: Averaging and coordinate rotation[J]. Bound-Layer Meteor, 2003, 107(1): 1-48.
[23]双喜, 刘绍民, 徐自为, 等.黑河流域观测通量的空间代表性研究[J]. 地球科学进展, 2009, 24(7): 724-733.
[24]陈家宜, 范邵华, 赵传峰, 等. 涡旋相关法测定湍流通量偏低的研究[J]. 大气科学, 2006, 30(3): 423-432.
[25]刘绍民, 李小文, 施生锦, 等. 大尺度地表水热通量的观测、分析与应用[J]. 地球科学进展, 2010, 25(11): 1113-1127.
Outlines

/