Analysis of Cloud Vertical Structure over Western China Based on Active Satellite Data

  • YE Peilong ,
  • WANG Tianhe ,
  • SHANG Kezheng ,
  • Lü Qiaoyi ,
  • WANG Shigong ,
  • LI Jingxin
Expand
  • Key Laboratory of Semi-Arid Climate Change of the Ministry of Education/College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China

Received date: 2013-05-09

  Online published: 2014-08-28

Abstract

Cloud vertical structure over western China and its neighborhood was analyzed using the 2B-CLDCLASS-LIDAR data of CloudSat/CALIPSO during the period from March 2007 to February 2008. The results show that the occurrence frequency of single-layer cloud is greater than multi-layer cloud over the whole region, multi-layer cloud occurrence frequency for Tianshan Mountains and the middle-west of Qilian Mountains is higher than the surrounding area throughout the year. Cloud top and base heights of all clouds change apparently with the seasons and regions, and the seasonal variation of cloud top height is more significant than cloud base height. The cloud height of each layer has no remarkable seasonal variation in Northwest region, however, the significantly distinct in Qinghai-Xizang Plateau. The average of cloud thickness is greater than 2 km for single-layer cloud and ranges from 1 km to 2 km for double-layer and three-layer clouds. The vertical distance of double-layer clouds is greater than other consecutive layers, and the seasonal variation of consecutive layers in Qinghai-Xizang Plateau is more significant than Northwest region. The occurrence frequency of ice phase cloud in summer over the south slope of Qinghai-Xizang Plateau is greater than other seasons. However, more ice clouds over other regions are present in winter and spring. Apart from the south slope of Qinghai-Xizang Plateau, the occurrence frequency of ice cloud in winter is greater than 80% for other regions.

Cite this article

YE Peilong , WANG Tianhe , SHANG Kezheng , Lü Qiaoyi , WANG Shigong , LI Jingxin . Analysis of Cloud Vertical Structure over Western China Based on Active Satellite Data[J]. Plateau Meteorology, 2014 , 33(4) : 977 -987 . DOI: 10.7522/j.issn.1000-0534.2013.00158

References

[1]Webster P J, Stephens G L. Cloud-radiation interaction and the climate problem[M]. New York: Cambridge University Press, 1984: 63-78.
[2]邱金桓, 吕达仁, 陈洪滨, 等. 现代大气物理学研究进展[J]. 大气科学, 2003, 27(4): 628-652.
[3]Arking A. The radiative effects of clouds and their impact on climate[J]. Bull Amer Meteor Sci, 1991, 72: 795-813.
[4]张华, 荆现文. 气候模式中云的垂直重叠假定对模拟的地-气辐射的影响研究[J]. 大气科学, 2010, 34(3): 520-532.
[5]徐小红, 余兴, 朱延年, 等. 一次强飑线云结构特征的卫星反演分析[J]. 高原气象, 2012, 31(1): 258-268.
[6]刘引鸽, 王宁练, 武小波, 等. 1951-2009年中国低云量的时空特征及其影响因素[J]. 高原气象, 2013, 32(6): 1608-1616, doi:10.7522/j.issn.1000-0534.2012.00142.
[7]吴伟, 王式功. 中国北方云量变化趋势及其与区域气候的关系[J]. 高原气象, 2011, 30(3): 652-658.
[8]张琪, 李跃清, 陈权亮, 等. 近46年西南地区云量的时空变化特征[J]. 高原气象, 2011, 30(2): 340-348.
[9]Slingo A, Slingo J M. The response of a general circulation model to cloud longwave radiative Forcing. I: Introduction and initial experiments[J]. Quart J Roy Meteor Soc, 1988, 114: 1027-1062.
[10]Randall D A, Dazlich D A, Corsetti T G, et al. Interactions among radiation, convection, and large-scale dynamics in a general circulation model[J]. J Atmos Sci, 1989, 46: 1943-1970.
[11]Wang J H, Rossow W B. Effects of cloud vertical structure on atmospheric circulation in the GISS GCM[J]. J Climate, 1998, 11: 3010-3029.
[12]Zhang M H, Lin W Y, Klein S A, et al. Comparing clouds and their seasonal variations in 10 tmospheric general circulation models with satellite measurements[J]. J Geophys Res, 2005, 110, D15S02, doi:10.1029/2004JD005021.
[13]Randall D A, Wood R, Bony S, et al. Climate models and their evaluation[R]//Solomon S, Qin D, Manning M, et al. eds. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. New York: Cambridge University Press, 2007: 589-662.
[14]Wang J H, Rossow W B, Zhang Y C. Cloud vertical structure and its variations from a 20-yr global rawinsonde dataset[J]. J Climate, 2000, 13: 3041-3056.
[15]范广洲, 程国栋. 青藏高原隆升对西北地区降水量变化的影响[J]. 高原气象, 2003, 22(1): 67-74.
[16]Huang J, Lin B, Minnis P, et al. Satellite-based assessment of possible dust aerosols semi-direct effect on cloud water path over East Asia[J]. Geophys Res Lett, 2006, 33, L19802, doi:10.1029/2006GL026561.
[17]Huang J, Minnis P, Lin B, et al. Possible influences of Asian dust aerosols on cloud properties and radiative forcing observed from MODIS and CERES[J]. Geophys Res Lett, 2006, 33, L06824, doi: 10.1029/2005GL024724.
[18]Wang T, Huang J. A method for estimating optical properties of dusty cloud[J]. Chinese Optics Letters, 2009, 7(5): 368-372.
[19]徐影, 丁一汇, 李栋梁. 青藏地区未来百年气候变化[J]. 高原气象, 2003, 22(5): 451-457.
[20]张强, 张存杰, 白虎志, 等. 西北地区气候变化新动态及对干旱环境的影响[J]. 干旱气象, 2010, 28(1): 1-7.
[21]白虎志, 董文杰, 马振锋. 青藏高原及邻近地区的气候特征[J]. 高原气象, 2004, 23(6): 890-897.
[22]牛涛, 刘洪利, 宋燕, 等. 青藏高原气候由暖干到暖湿时期的年代际变化特征研究[J]. 应用气象学报, 2005, 16(6): 763-771.
[23]Min Q, Wang T, Long C N, et al. Estimating fractional sky cover from spectral measurements[J]. J Geophys Res, 2008, 113, D20208, doi: 10.1029/2008JD010278.
[24]Wang T, Min Q. Retrieving optical depths of optically thin and mixed-phase clouds from MFRSR measurements[J]. J Geophys Res, 2008, 113, D19203, doi: 10.1029/2008JD009958.
[25]Poore K, Wang J, Rossow W B. Cloud layer thicknesses from a combination of surface and upper-air observation[J]. J Climate, 1995, 8: 550-568.
[26]Wang J, Rossow W B. Determination of cloud vertical structure from upper-air observations [J]. J Appl Meteor, 1995, 34: 2243-2258.
[27]Huang J, Minnis P, Lin B, et al. Advanced retrievals of multilayered cloud properties using Multispectral measurements[J]. J Geophys Res, 2005, 110, D15S18, doi: 10.1029/2004JD005101.
[28]王可丽, 江灏, 陈世强. 青藏高原地区的总云量-地面观测、卫星反演和同化资料的对比分析[J].高原气象, 2001, 20(3): 252-257.
[29]丁守国, 石广玉, 赵春生. 利用ISCCP D2资料分析近20年全球不同云类云量的变化及其对气候的可能影响[J]. 科学通报, 2004, 49(11): 1105-1111.
[30]陈勇航, 黄建平, 王天河, 等. 西北地区不同类型云的时空分布及其与降水的关系[J]. 应用气象学报, 2005, 16(6): 717-727.
[31]陈勇航, 陈艳, 黄建平, 等. 中国西北地区云的分布及其变化趋势[J]. 高原气象, 2007, 26(4): 742-748.
[32]陈勇航, 黄建平, 陈长和, 等. 西北地区空中云水资源的时空分布特征[J]. 高原气象, 2005, 24(6): 906-912.
[33]Stephens G L, Vane D G, Boain R J, et al. The CloudSat mission and the A-Train[J]. Bull Amer Meteor Soc, 2002, 83: 1771-1790.
[34]Winker D M, Pelon J, McCormick M P. The CALIPSO mission: Spaceborne lidar for observation of aerosols and clouds[C]//Upendra N S, Toshikasu I, Liu Z S, ed. Lidar Remote Sensing for Industry and Environment Monitoring III (4893), US: SPIE, 2003, doi: 10.1117/12.466539.
[35]Forsythe J M, Dodson J B, Partain P T, et al. How total precipitable water vapor anomalies relate to cloud vertical structure[J]. J Hydrometeor, 2012, 13: 709-721.
[36]王胜杰, 何文英, 陈洪滨, 等. 利用CloudSat资料分析青藏高原、高原南坡及南亚季风区云高度的统计特征量[J]. 高原气象, 2010, 29(1): 1-9.
[37]黄芳, 陈洪滨, 王振会. 37GHz和94GHz的大气微波衰减比较分析[J]. 遥感技术与应用, 2003, 18(5): 269-275.
[38]Weisz E, Li J, Menzel W P, et al. Comparison of AIRS, MODIS, CloudSat and CALIPSO cloud top height retrievals[J]. Geophys Res Lett, 2007, 34, L17811, doi: 10.1029/2007GL030676.
[39]宋连春, 张存杰. 20世纪西北地区降水量变化特征[J]. 冰川冻土, 2003, 25(2): 143-148.
[40]赵昕奕, 张惠远, 万军. 青藏高原气候变化对气候带的变化[J]. 地理科学, 2002, 22(2): 190-195.
[41]刘瑞霞, 刘玉洁, 杜秉玉. 利用ISCCP资料分析青藏高原云气候特征[J]. 南京气象学院学报, 2002, 25(2): 226-234.
[42]李积明, 黄建平, 衣育红, 等. 利用星载激光雷达资料研究东亚地区云垂直分布的统计特征[J]. 大气科学, 2009, 33(4): 698-707.
[43]王帅辉, 韩志刚, 姚志刚, 等. 基于CloudSat资料的中国及周边地区云垂直结构统计分析[J]. 高原气象, 2011, 30(1): 38-52.
[44]Luo Y L, Zhang R H, Qian W M, et al. Inter-comparison of deep convection over the Tibetan Plateau-Asian Monsoon Region and subtropical North American in boreal summer using CloudSat/CALIPSO data[J]. J Climate, 2011, 24(8): 2164-2177.
[45]尚博, 周毓荃, 刘建朝, 等. 基于CloudSat的降水云和非降水云垂直特征[J]. 应用气象学报, 2012, 23(1): 1-9.
[46]汪宏七, 赵高祥. 云和辐射(I): 云气候学和云的辐射作用[J]. 大气科学, 1994, 18(增刊1): 910-932.
Outlines

/