The wide snowstorm in the middle and south of north China on 10-11 November 2009 was analyzed using the NCEP reanalysis data and the general automatic meteorological observing stations data. The results indicate that: (1)The snowstorm occurred in the weather system of upper trough on 500 hPa, low vortex and shear line, and Hetao front occlusion on 700 hPa. (2)The snowstorm located in the right back of the entrance of polar front jet stream and the front left of the subtropical jet stream on 200 hPa, the front left of Southwest jet stream on 700 hPa, and the front right of the easterly jet stream on 925 hPa and 850 hPa. (3)The snowstorm was caused by the jet streams at different altitudes. The low-level jet was formed and developed under the coupling of upper-level jet. The easy-coupling area is where positive vorticity advection is increasing when the altitude increases, in the right of the entrance area of the upper-level jet or the left of the exit area of upper-level jet. (4)Southwest jet stream has provided adequate water vapor for the snowstorm and formed the high-humidity area, which made and maintained the convection instability layer in the snowstorm area. (5)Southwest jet stream and Northerly jet stream formed convergence zone over the snowstorm area, which set up the raising movement of the weather scale for the snowstorm. (6)The secondary circulation caused by the coupling of upper-level and low-level jet increased the raising movement, triggered the release of unstable energy, and increased the intensity and duration of the snowstorm. (7)Easterlies on 925 hPa formed dry and cold mattress in the boundary layer of the snowstorm area, which helped the southerly warm and humid air to climb and strengthen dynamic lifting effect.
CHEN Xuezhen
,
MU Jianli
,
ZHAO Guixiang
,
YANG Dong
. Analysis of Jet Stream Characteristic during the Snowstorm Process in North China[J]. Plateau Meteorology, 2014
, 33(4)
: 1069
-1075
.
DOI: 10.7522/j.issn.1000-0534.2013.00205
[1]朱乾根. 低空急流与暴雨[J]. 气象科技, 1975(8):12-18.
[2]朱乾根, 林锦瑞, 寿绍文, 等. 天气学原理和方法(第四版)[M]. 北京: 气象出版社, 2007: 376-377, 398-399.
[3]韩经纬, 沈建国, 孙永刚, 等. 一次强沙尘暴和暴雪天气过程的诊断及模拟分析[J]. 高原气象, 2007, 26(5):1031-1038.
[4]赵桂香, 杜莉, 范卫东, 等. 一次冷锋倒槽暴风雪过程特征及其成因分析[J]. 高原气象, 2011, 30(6):1516-1525.
[5]蒋后硕, 吕克利. 高、低空急流中的锢囚锋环流[J]. 高原气象, 2000, 19(3):265-276.
[6]徐建芬, 陶健红, 夏建平. 青藏高原切变线暴雪中尺度分析及其涡源研究[J]. 高原气象, 2000, 19(2):187-197.
[7]张迎新, 张守保, 裴玉杰, 等. 2009年11月华北暴雪过程的诊断分析[J]. 高原气象, 2011, 30(5):1204-1212.
[8]王正旺, 姚彩霞, 刘小卫, 等. “2009年. 11”山西大暴雪天气过程诊断分析[J]. 高原气象, 2012, 31(2): 477-486.
[9]裴宇杰, 王福侠, 张迎新, 等. 2009年晚秋河北特大暴雪多普勒雷达特征分析[J]. 高原气象, 2012, 31(4): 1110-1118.
[10]范永祥, 张芬复, 赵同进. 华北春季大雪和黄渤海强东风[J]. 气象, 1979, 15(9):9-10.
[11]Uccellini L W, Johnson D R. The coupling of upper and lower tropospheric jet stream and implication for the development of severe convective storm[J]. Mon Wea Rew, 1979, 107(6): 682-703.
[12]俞樟孝, 李法然, 杨厥正, 等. 一次高空急流中心引起的梅雨锋暴雨分析[J]. 杭州大学学报: 自然科学版, 1981, 1: 104-109.
[13]黄安丽, 高坤. 对流层高、低空急流耦合作用的动力学分析[J]. 浙江大学学报: 理学版, 1982, 9(3): 356-364.
[14]赵亚民. 关于低空急流[J]. 气象, 1979, (6): 24-25.
[15]寿绍文, 励申申, 姚秀萍, 等. 中尺度气象学[M]. 北京:气象出版社, 2003: 235-241.