In order to simulate the surrounding electromagnetic field of lightning return stroke channel on overhead line, firstly, the characteristics of the surrounding electromagnetic field of lightning return stroke channel were analyzed by using the modified transmission line model with exponential current decay with height. And then the lightning induced over-voltage of the overhead line was calculated by using the procedure based on Agrawal field line coupling model. Moreover, the accuracy of the program was verified by comparison between its calculation results and the practical experimental results, the calculation results were close to the experimental data. The calculation results showed that, the vertical and horizontal components of the electric field were both to be taken into account in the coupling mechanism. The peak value and the maximum front steepness of the induced voltages were affected by the peak value and the maximum time derivative of the channel-base current, while the amplitude of the induced overvoltage was only affected by the current amplitude. At close distance from the lightning channel (as 50 m), the lightning induced over-voltage of the overhead line was inversely related to the return stroke velocity. With the increase of the observation distance, the maximum time derivative of the lightning induced over-voltage was increased, but the peak value decreased. In addition, the induced voltage would increase with increasing height of the overhead line and also increase with increasing the grounding impedance, and the induced voltage was unrelated to the cable length and diameter changes.
LIU Xiaodong
,
ZHANG Qilin
,
FENG Xuyu
,
YANG Xinpei
,
LIU Jiao
,
LI Chen
. Numerical Calculation of Lightning Return Stroke Electromagnetic Field Coupling Voltages on Overhead Line[J]. Plateau Meteorology, 2014
, 33(4)
: 1146
-1153
.
DOI: 10.7522/j.issn.1000-0534.2013.00089
[1]严飞, 何慧雯, 谷定燮. 特高压线路雷击塔顶时导线上的感应过电压[J]. 高电压技术, 2006, 32(12): 7-10.
[2]魏本刚, 傅正财, 袁海燕, 等. 改进先导传播模型法500kV架空线路雷电绕击分析[J]. 中国电机工程学报, 2008, 28(25): 25-29.
[3]袁海燕, 傅正财, 魏本刚, 等. 冲击电晕对特高压输电线路绕击耐雷水平的影响分析[J]. 中国电机工程学报, 2009, 29(25): 111-117.
[4]章涵, 王道洪, 吕伟涛, 等. 基于雷声到达时间差的单站闪电通道三维定位系统[J]. 高原气象, 2012, 31(1): 209-217.
[5]张荣, 张广庶, 王彦辉, 等. 青藏高原东北部地区闪电特征初步分析[J]. 高原气象, 2013, 32(3): 673-681, doi: 10.7522/j.issn.1000-0534.2013.00083.
[6]张其林, 郄秀书. 地闪回击辐射场波形的重构及地闪放电参量的估算[J]. 高原气象, 2003, 22(3): 252-258.
[7]武斌, 张广庶, 王彦辉, 等. 双接地负地闪VHF辐射源放电通道和光学通道的对比分析[J]. 高原气象, 2013, 32(2): 519-529, doi: 10.7522/j.issn.1000-0534.2012.00049.
[8]张其林, 郄秀书, 王才伟, 等. 空中人工引雷先导特征的统计分析[J]. 高原气象, 2002, 21(2): 167-174.
[9]Rusck S. Lightning[M]. New York: Academic Press, 1977.
[10]Chowdhuri P. Analysis of lightning induced voltages on overhead line[J]. IEEE Transactions on Power Delivery, 1989, 4(1): 479-491.
[11]Agrawal A, Price H, Gurbaxani S. Transient response of multi-conductor transmission lines excited by a no uniform electromagnetic field[J]. IEEE Trans on Antennas Propagation, 1980, 18(2): 432-435.
[12]文习山, 彭向阳, 解广润. 架空配电线路感应过电压的数值计算[J]. 中国电机工程学报, 1998, 18(4): 299-301.
[13]任合明, 周壁华, 余同彬, 等. 雷电电磁脉冲对架空电力线的耦合效应[J]. 强激光与粒子束, 2005, 17(10): 1539-1543.
[14]杨静, 郄秀书, 王建国, 等. 雷电在水平导体中产生感应电压的观测及数值模拟研究[J]. 物理学报, 2008, 57(3): 1968-1975.
[15]陈绍东, 张义军, 杨少杰, 等. 人工触发闪电引发的低压电源系统过电压特征[J]. 高电压技术, 2009, 36(12): 2944-2952.
[16]Rakov V A, Uman M A. Review and evaluation of lightning return stroke models including some aspects of their application[J]. IEEE Transactions on Electromagnetic Compatibility, 1998, 40(4): 403-426.
[17]Gomes C, Cooray V. Concepts of lightning returns stroke models[J]. IEEE Transactions on Electromagnetic Compatibility, 2000, 42(1): 82-96.
[18]Thottappillil R A, Rakov V A. On different approaches to calculating lightning electric fields[J]. J Geophys Res, 2001, 106(13): 14191-14205.
[19]Carlo A N, Farhad R, Ianoz M, et al. Lightning-induced voltages on overhead lines[J]. IEEE Transactions on Electromagnetic Compatibility, 1993, 35(1):75-86.
[20]Taylor C D, Satterehite R S, Harrison C W. The response of a terminated two wire transmission line excited by a no uniform electromagnetic field[J]. IEEE Transactions on Antennas Propagation, 1987, 13(11): 987-989.
[21]Rachidi F. Formulation of field-to-transmission line coupling equations in terms of magnetic excitation field [J]. IEEE Transactions on Electromagnetic Compatibility, 1993, 35(3): 404-407.
[22]文武. 感应雷电磁干扰及其防护研究[D]. 武汉:武汉大学, 2004: 11-14.
[23]Cooray V. The Lightning Flash[M]. London: The Institution of Engineering and Technology, 2003: 426-445.
[24]Nucci C A. The lightning induced over-voltage code[J]. IEEE Power engineering society winter meeting, 2000, 10(4): 2417-2418.
[25]Zhang Qilin, Liu Xiaodong, Yang Jin, et al. The characteristics and simulation of close leader/return stroke field change waveforms[J]. Radio Science, 2011, 46, RS1017, doi: 10.1029/2010RS004469.
[26]刘晓东, 张其林, 冯旭宇. 有限电导率对地闪回击辐射场上升沿时间和场强幅值的影响[J]. 高电压技术, 2012, 38(2): 457-463.
[27]Rachidi F, Nucci C A, Ianoz M, et al. Response of multi-conductor power lines to nearby lightning return stroke electromagnetic fields[J]. IEEE Transactions on Power Delivery, 1997, 12(3): 1404-1411.
[28]Barker P P, Short T A, Eybert-Berard A R, et al. Induced voltage measurements on an experimental distribution line during nearby rocket triggered lightning flashes[J]. IEEE Transactions on Power Delivery, 1996, 11(2): 980-995.