Based on conventional surface and sounding observation data, NCEP 1°×1° reanalysis data, a snowstorm structure with low-level eastern wind in Shanxi Province from 28 to 29 November 2011 is researched. The results are following: (1) This weather process is developed by the joint influence of upper westerly trough, shear lines in lower level, ground return-flow and inverse trough. The northeaster wind occurs from 925 hPa to 850 hPa upper Shanxi about 18 h before the snowstorm, the northeaster wind occurs on surface in Shanxi about 12 h before the snowstorm, and it is strong during the snowstorm; The low-level northeaster wind is cold and dry before the snow, and it is a wet-cold pad during the snow. (2) The water vapor of this snowstorm comes from the southwest water vapor emerging in southuest China and transport northward, this emerging southwest flow comes from the southwest wind in the front of South Westerly Trough and the turning of east flow in Beibu Gulf which comes from Western Pacific, then it is combined with the southwest flow in the front of the westerly trough. The heavy snow occurs in the area of south wind of the wind convergence on 700 hPa where is on the northwest of the vapor flux center and has dense isolines. (3) The heavy snow accompanies with the deep wet layer, the obvious vapor flux convergence under 500 hPa and strong updraft current upper 800 hPa in the troposphere upper Shanxi area, under 800 hPa it has obvious downdraft current which is caused by the low-level eastern wind. (4) The westerly jet on 300 hPa moves eastward and goes down southward among the heavy snow, Shanxi is located on the right of the jet's entrance region and occurs strong divergence, which impels the development and maintenance of the inverse trough of the Great Bend of the Yellow River on surface, and may cause stronger updraft current in the area of heavy snow.
ZHOU Jinhong
,
MA Hongqing
,
SUN Shaoxiong
,
QIAO Jinhai
. Structure Analysis of a Snowstorm with Low-level Eastern Wind in Shanxi Province[J]. Plateau Meteorology, 2014
, 33(5)
: 1305
-1314
.
DOI: 10.7522/j.issn.1000-0534.2013.00087
[1]朱爱民,寿绍文. 一次冬季暴雪过程锋生次级环流的诊断分析[J]. 南京气象学院学报,1994,17(2):183-187.
[2]姜学恭,李彰俊,康玲,等. 北方一次强降雪过程的中尺度数值模拟[J]. 高原气象,2006,25(3):476-484.
[3]张小玲,程麟生. “96.1”暴雪期中尺度切变线发生发展的动力诊断I:涡度和涡度变率诊断[J]. 高原气象,2000,19(3):285-294.
[4]王文,程麟生. “96.1”高原暴雪过程三维条件性对称不稳定的数值研究[J]. 高原气象,2002,21(3):225-232.
[5]苗爱梅,安炜,刘月丽,等. 春季一次暴雪过程的多普勒雷达动力学诊断[J]. 气象,2007,33(2):57-61.
[6]张广周,沈桐立,李戈,等. 一次暴雪天气的数值模拟及诊断分析[J]. 气象,2008,34(9):65-72.
[7]吴伟,邓莲堂,王式功. “0911”华北暴雪的数值模拟及云微物理特征分析[J]. 气象,2011,37(8):991-998.
[8]王正旺, 姚彩霞, 刘小卫, 等. “2009.11”山西大暴雪天气过程诊断分析[J]. 高原气象, 2012, 31(2): 477-486.
[9]吴庆梅, 杨波, 王国荣. 北京地区一次回流暴雪过程的锋区特征分析[J]. 高原气象, 2014, 33(2): 539-547, doi: 10.7522/j.issn.1000-0534.2012.00194.
[10]张俊兰,崔彩霞,陈春艳. 北疆典型暴雪天气的水汽特征研究[J]. 高原气象, 2013, 32(4): 1115-1125, doi: 10.7522/j.issn.1000-0534.2012.00105.
[11]赵桂香,许东蓓. 山西两类暴雪预报的比较[J]. 高原气象,2008,27(5):1140-1148.
[12]赵桂香,秦春英,赵彩萍,等. 2009年冬季黄河中游一次由旱转雨雪天气的诊断分析[J]. 高原气象,2010,29(4): 864-874.
[13]漆梁波,张瑛. 中国东部地区冬季降水相态的识别判据[J]. 气象,2012,38(1):96-102.
[14]苗爱梅,贾利冬,李智才,等. “091111”山西特大暴雪过程的流型配置及物理量诊断分析[J]. 高原气象,2011,30(4):969-981.
[15]王正旺,苗爱梅,庞转棠,等. 山西中南部区域性暴雪天气诊断分析[J]. 高原气象,2010,29(2):531-538.
[16]赵桂香,杜莉,范卫东,等. 山西省大雪天气的分析预报[J]. 高原气象,2011, 30(3): 727-738.
[17]张迎新,张守保. 华北平原回流天气的结构特征[J]. 南京气象学院学报,2006,29(1):107-113.
[18]高维英,李明,张弘,等. 一次华北回流冷空气引发的罕见暴雪分析[J]. 安徽农业科学,2011,39(4): 2020-2024.
[19]边志强,王建捷,谈哲敏. 对华北锢囚锋个例的数值模拟分析[J]. 气象,1999,25(10):8-14.