Numerical Simulation of the Rainstorm Process in Ya’an Based on WRF Model

  • WU Ze ,
  • FAN Guangzhou ,
  • ZHOU Dingwen ,
  • MU Ling
Expand
  • School of Geography Sciences, Southwest University, Chongqing 400715, China;2. Center for Plateau Atmospheric and Environmental Research, Chengdu University of Information Technology, Chengdu 610225, China;3. Collaborative Innovation Center Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science & Technology, Nanjing 210044, China;4. The 96617 People's Liberation Army, Luzhou 646100, China

Received date: 2013-01-28

  Online published: 2014-10-28

Abstract

A rainstorm process in Ya'an on 21 August 2010 was studied using numerical simulation conducted by the WRF model. Comparison the simulated results and the fact demonstrates that WRF model could well simulates the spatial and temporal distribution of the precipitation process. Diagnostic analysis of this rainstorm using high spatial and temporal resolution simulation data were done. The result shows that: The blocking effect of the Tibetan Plateau makes the warm air along southwest of the subtropical high continuously transport to the basin, and a cyclonic circulation center forms over Ya'an region on 700 hPa. Strong upward motion was shown in the center of heavy rainfall in the main precipitation period from low-level to senior, and it maintains high-level divergence, low level convergence, high altitude negative vorticity and low altitude positive vorticity in the storm center. With the development of heavy rain, continuous enhancement of positive vorticity in the troposphere provides pretty favorable dynamic conditions for the generation and maintenance of a rainstorm. The wet air over the middle and lower troposphere, the strong transportation of moisture and the high and low level configuration of moisture flux divergence provide adequate moisture conditions. The atmospheric stratification of the lower troposphere is unstable, and the middle is a neutral, so this kind of potential instability supply thermal conditions for the occurrence of convective weather, and it is conducive to the formation of the heavy precipitation process at the same time.

Cite this article

WU Ze , FAN Guangzhou , ZHOU Dingwen , MU Ling . Numerical Simulation of the Rainstorm Process in Ya’an Based on WRF Model[J]. Plateau Meteorology, 2014 , 33(5) : 1332 -1340 . DOI: 10.7522/j.issn.1000-0534.2013.00084

References

[1]彭贵康,李志友,柴复新,等. 雅安地形与降水的气候特征[J]. 高原气象,1985,4(3):230-240.
[2]吴泽,范广洲,周定文,等. 近60年“雅安天漏”变化特征分析[J]. 成都信息工程学院学报,2012,27(1):63-70.
[3]陶诗言,丁一汇,周晓平. 暴雨和强对流天气的研究[J]. 大气科学,1979, 3(3):227-238.
[4]丁一汇. 暴雨和中尺度气象学问题[J]. 气象学报,1994,52(3):274-284.
[5]张羽,牛生杰,于华英,等. 雷州半岛“07. 8”致洪特大暴雨的数值模拟[J]. 大气科学学报,2010,33(1):47-57.
[6]吕炯. 巴山夜雨[J]. 气象学报,1942, 16:36-53.
[7]汪之义. 雅安“天漏”的形成及其预报[G]//中央气象局气象科技情报研究所, 气象科技资料,1977(5):66-74.
[8]彭贵康,柴复新,曾庆存,等. “雅安天漏”研究I:天气分析部分[J]. 大气科学,1994,18(4):466-475.
[9]席官臣. 雅安区域暴雨的气候特征[J]. 四川气象,1992, 12(1):7-15.
[10]席官臣. 雅安地区各县(市)暴雨的气候特征[J]. 四川气象,1992,12(1):39-51.
[11]龙从彬,李小川,周学云,等. 用墨西哥帽小波函数研究雅安降水变化[J]. 四川气象,2007,102(4):1-4.
[12]Li Y Q, Li D J, Yang S, et al. Characteristics of the precipitation over the eastern edge of the Tibetan Plateau[J]. Meteor Atmos Phys, 2010, 106(1-2): 49-56.
[13]彭贵康,张小渝,谷生慧,等. 雅安市降水“精细化”预报的动力学基础[J]. 四川气象,2004,88(2): 8-12.
[14]彭贵康,张小渝,谷生慧. 雅安市降水预报方法1.02版(PFMV1.02)[J]. 四川气象,2008,88(2): 25-26.
[15]李跃清,张晓春. “雅安天漏”进展研究[J]. 暴雨灾害,2011,30(4):19-22.
[16]苗秋菊,徐祥德,施小英. 青藏高原周边异常多雨中心及水汽输送通道[J]. 气象,2004,30(12):44-47.
[17]韦志刚,朱艳峰,宇如聪. 川西地区夏季降水的年际变化特征及与大尺度环流的联系[J]. 大气科学,2003,27(6): 1046-1056.
[18]卢萍,宇如聪,周天军. 2003年8月“巴蜀夜雨”过程的模拟和分析研究[J]. 气象学报,2008,66(3):371-380.
[19]宋雯雯,李国平. 一次高原低涡过程的数值模拟与结构特征分析[J]. 高原气象,2011,30(2):267-276.
[20]沈沛丰,张耀存. 四川盆地夏季降水日变化的数值模拟[J]. 高原气象,2011,30(4):860-868.
[21]宇如聪,曾庆存,彭贵康,等. “雅安天漏”研究Ⅱ:数值预报试验[J]. 大气科学,1994,18(5): 535-551.
[22]曾庆存,宇如聪,彭贵康,等. “雅安天漏”研究Ⅲ:特征、物理量结构及其形成机制[J]. 大气科学,1994,18(6):649-659.
[23]蔡芗宁,周庆亮,钟青,等. 边界层参数化对“雅安天漏”降水数值模拟的影响[J]. 气象,2007,30(5):12-19.
[24]章国材. 美国WRF模式的进展和应用前景[J]. 气象,2004, 30(12):27-31.
[25]王晓君,马浩. 新一代中尺度预报模式(WRF) 国内应用进展[J]. 地球科学进展,2011, 26(11): 1191-1199.
[26]孙健,赵平. 用WRF与MM5模拟1998 年三次暴雨过程的对比分析[J]. 气象学报,2003, 61(6):692-701.
[27]王舒畅,季亮,潘晓滨,等. 一次梅雨锋暴雨过程的中尺度对比模拟分析[J]. 气象科学, 2005, 25(6): 569-578.
[28]赵大军,江玉华,李莹. 一次西南低涡暴雨过程的诊断分析与数值模拟[J]. 高原气象,2011,30(5):1158-1169.
[29]薛羽君,白爱娟,李典. 四川盆地降水日变化特征分析和个例模拟[J]. 地球科学进展,2012, 27(8): 885-894.
[30]李安泰,何宏让,张云. WRF模式陆面参数扰动对一次西北暴雨影响的数值模拟[J]. 高原气象,2012,31(1):65-75.
[31]何由,阳坤,姚檀栋,等. 基于WRF模式对青藏高原一次强降水的模拟[J]. 高原气象,2012,31(5):1183-1191.
[32]李跃清. 长江上游暴雨的边界层动力诊断研究[J]. 大气科学,1996,20(1):73-78.
[33]李跃清. 1998年青藏高原东侧边界层风场与长江暴雨洪水的关系[J]. 大气科学,2000,24(5):641-648.
[34]Jiang X W,Li Y Q, Zhao X B, et al. Characteristics of the summertime boundary layer and atmospheric vertical structure over the Sichuan basin[J]. J Meteor Soc Japan, 2012, 90c: 33-54.
[35]Li Y Q, Gao W L. Atmospheric boundary layer circulation on the eastern edge of the Tibetan Plateau, China, in summer[J]. Arctic, Antarctic, and Alpine Research, 2007, 39(4): 708-713.
[36]Hoskins B J. The role of potential vorticity in symmetric stability and instability[J]. Quart J Roy Meteor Soc, 1974, 100( 425): 480-482.
[37]陈红专,汤剑平. 一次突发性特大暴雨的中尺度分析和诊断[J]. 气象科学,2009,29( 6):797-803.
Outlines

/