Heat Source over ‘Fishtail’ Type Topography Effects on Tianshan Mountain Regions Precipitation Systems and Water Resources

  • GUO Yudi ,
  • XU Xiangde ,
  • CHEN Weimin ,
  • WEI Fengying ,
  • CHEN Aijun
Expand
  • Nanjing University of Information Science & Technology, Nanjing 210044, China;2. State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing 100081, China

Received date: 2013-01-28

  Online published: 2014-10-28

Abstract

From the point view at the role of the apparent heat source over the area of Tibetan Plateau and which connected with Tianshan Mountain, the relationship between the heat source over the area of Tibetan Plateau and which connected with Tianshan Mountain and the atmospheric water cycle, as well as the cloud-water resource in the Tianshan Mountain regions were investigated, using the satellite data, the monthly National Centers for Atmospheric Prediction and the National Center for Atmospheric Research (NCEP/NCAR) reanalysis with a resolutions of 2.5°×2.5° and 1°×1°, respectively, together with the Climatic Research Unit (CRU)precipitation data, in order to achieve the investigation on the changes of atmospheric water cycle structure in Tianshan Mountain regions in terms of diagnosis on column water vapor, moisture transport, the correlated vector and the apparent heat source. The spatial-temporal distribution of the summer half year rainfall and its variation was also analyzed. The results show that: The large parts of precipitation and column water vapor over region of Tianshan Mountain are concentrated over its west part. The analysis on the vertical structure of apparent heat source and sink of water vapor also revealed that the rich cloud-water resource is well consistent with the apparent heat source over Tibetan Plateau fishtail type topography. We further analyzed the integrate image of the long distant moisture source, which formed the rich cloud-water resources over the area of Tibetan Plateau and which connected with Tianshan Mountain using the methods correlated vector analysis between the apparent heat source over this region and the column water vapor transport. The results indicated that the atmospheric moisture is mainly come from the South Atlantic Ocean, the Bay of Bengal and the Arabian Sea and the northern Arctic Ocean. A 12-year cycle is obvious for the water vapor, precipitation, and the apparent heat source over "fishtail" type topography. From the 1950s to nowadays, the cycle of apparent heat source over "fishtail" type topography is ahead of 3~4 years compared to the changes of column water vapor. However, the column water vapor changes appeared in advance 3~4 years in contrast to the precipitation over this region, and after that, with an advance in 1~2 years. The interannual variation of cloud-water resources represented, to some extent, the response mechanism of the regional atmospheric moisture cycle structure to the apparent heat source over fishtail type topography.

Cite this article

GUO Yudi , XU Xiangde , CHEN Weimin , WEI Fengying , CHEN Aijun . Heat Source over ‘Fishtail’ Type Topography Effects on Tianshan Mountain Regions Precipitation Systems and Water Resources[J]. Plateau Meteorology, 2014 , 33(5) : 1363 -1373 . DOI: 10.7522/j.issn.1000-0534.2013.00120

References

[1]仇家琪, 孙希华. 天山积雪初步研究[J]. 干旱区地理, 1992, 15(3): 9-21.
[2]刘潮海, 谢自楚. 天山冰川作用[M]. 北京: 科学出版社, 1998: 18-41.
[3]施雅风. 中国冰川与环境-现在、过去和未来[M]. 北京: 科学出版社, 2000: 410.
[4]魏文寿, 胡汝骥. 中国天山的降水与气候效应[J]. 干旱区地理, 1990, 13(1): 29-36.
[5]胡汝骥. 中国 天山自然地理[M]. 北京: 中国环境科学出版社, 2004: 92-95.
[6]赵传成, 王雁, 丁永建, 等. 西北地区近50年气温及降水的时空变化[J]. 高原气象, 2011, 30(2): 385-390.
[7]栾晨, 宋敏红, 蔡英, 等. 西北区西部夏半年强降水分布与变化特征[J]. 高原气象, 2012, 31(4): 629-637.
[8]魏文寿, 袁玉江, 喻树龙, 等. 中国天山山区235年气候变化及降水趋势预测[J]. 中国沙漠, 2008, 28(8): 803-808.
[9]袁玉江, 魏文寿, 何清. 天山山区近40年冬季温度变化特征[J]. 气象, 2005, 31(5): 156-160.
[10]薛燕, 韩萍, 冯国华, 等. 半个世纪以来新疆降水和气温的变化趋势[J]. 干旱区研究, 2003, 20(2): 127-130.
[11]赵勇, 邓学良, 李秦, 等. 天山地区夏季极端降水特征及气候变化[J]. 冰川冻土, 2010, 32(5): 927-934.
[12]苏宏超,魏文寿,韩萍, 等. 新疆近50年来的气温和蒸发变化[J]. 冰川冻土, 2003, 25(2): 174-178.
[13]马洪亮, 马燕, 薛福民, 等. 天山天池近49年气候变化特征[J]. 气象科技, 2010, 38(2): 209-213.
[14]魏凤英. 现代气候统计诊断与预测技术[M]. 北京: 气象出版社, 2007: 99-104.
[15]Yu Yaxun, Wu Guoxiong. Water vapor content and its mean transfer in the atmosphere over Northwest China [J]. ACTA Meteorological Sinica, 2001, 15(2): 191-204.
[16]胡汝骥, 樊自立, 王亚俊, 等. 近50年新疆气候变化对环境影响评估[J]. 干旱区地理, 2001, 24(2): 97-103.
[17]马玉芬, 张广兴, 杨莲梅. 天山地形对新疆大风和降温天气作用的数值模拟研究[J]. 干旱区资源与环境, 2012, 26(5): 113-118.
[18]董美莹, 陈联寿. 地形影响热带气旋“泰利”降水增幅的数值研究[J]. 高原气象,2011, 30(3): 700-710.
[19]江吉喜, 范梅珠. 青藏高原夏季TBB场与水汽分布关系的初步研究[J]. 高原气象, 2002, 21(1): 20-24.
[20]崔玉琴. 西北内陆上空水汽输送及其源地[J]. 水利学报, 1994, 9(1): 79-87.
[21]王秀荣, 徐祥德, 苗秋菊. 西北地区夏季降水与大气水汽含量状况区域性特征[J]. 气候与环境研究, 2003, 8(1): 35-42.
[22]王秀荣, 徐祥德, 王维国. 西北地区春、夏季降水的水汽输送特征[J]. 高原气象, 2007, 26(4): 749-756.
[23]王秀荣, 徐祥德, 姚文清. 西北地区干、湿夏季的前期环流和水汽差异[J]. 应用气象学报, 2002, 13(5): 550-558.
[24]戴新刚, 李维京, 马柱国. 近十几年新疆水汽源地变化特征[J]. 自然科学进展, 2006, 16(12): 1651-1656.
[25]李江林, 李照荣, 杨建才, 等. 10年夏季西北地区水汽空间分布和时间变化分析[J]. 高原气象, 2012, 31(6): 1574-1581.
Outlines

/