Application of CINRAD Mosaic Products on Artificial Hail Suppression

  • DUAN Yiping ,
  • LIU Shoudong ,
  • LIU Liping ,
  • MA Jianli ,
  • YE Xiaofeng ,
  • WANG Guanhua
Expand
  • Yale-NUIST Center on Atmospheric Environment of Nanjing University of Information Science & Technology, Nanjing 210044, China;2. State Key Laboratory of Severe Weather Chinese Academy of Meteorological Sciences, Beijing 100081, China;3. Jiangxi Meteorological Service Center, Nanchang 330046, China;4. Beijing Weather Modification Office, Beijing 100089, China;5. Pingxiang in Jiangxi Province Meteorological Bureau, Pingxiang 337000, China

Received date: 2013-04-23

  Online published: 2014-10-28

Abstract

On basis of the distribution characteristics of reflectivity mosaic of China new generation weather radar (CINRAD), six indexes are suggested to identify hail cloud during hail suppression by artificial means, which include composite reflectivity (CR), echo top (ET), maximum reflectivity of ET (MET), vertical integrated liquid (VIL), density of VIL (VILD), and gradient of VIL (GVIL), respectively. Some indexes are calculated depending on storm cell identification and tracking (SCIT), form the fuzzy logical method to identify the suppression area. The results indicate that the method of three-dimensional hail recognition experiment are applied multiple hail fall alone in Beijing and Jiangxi. To contrast the hail observation data, calculation of the accuracy are greater than 77% the false ratio is below 26%, empty ratio below 22% through multiple example. Consider the portfolio reflectance characteristics of three-dimensional shape distribution of fuzzy logic method can well identify most workable hail cloud, tracking simulation effect is good, is conducive to effective application in figure hail proof operation. The hail clouds which need to be suppressed by artificial means can mostly be identified according to the characteristics of reflectivity mosaic and fuzzy logical method. The method has a better tracking effect and a promising application in hail suppression.

Cite this article

DUAN Yiping , LIU Shoudong , LIU Liping , MA Jianli , YE Xiaofeng , WANG Guanhua . Application of CINRAD Mosaic Products on Artificial Hail Suppression[J]. Plateau Meteorology, 2014 , 33(5) : 1426 -1439 . DOI: 10.7522/j.issn.1000-0534.2013.00139

References

[1]刘黎平,徐宝祥,王致君. 利用矩心跟踪法跟踪、警戒强对流天气方法初探[J]. 高原气象,1991,10(3): 317-324.
[2]Johnson J T,MacKeen P L,Witt A. The storm cell identification and tracking algorithm: An enhanced WSR-88D algorithm[J]. Wea Forecasting,1998,13: 263-276.
[3]Witt A,Eilts M D,Stumpf G J,et al. An enhanced hail detection algorithm for the WSR-88D[J]. Wea Forecasting,1998,13: 286-303.
[4]杨引明. 风暴的多普勒雷达自动识别、跟踪、预报及冰雹探测[D]. 南京:南京气象学院,1998.
[5]陈进强,杨连英. 多普勒天气雷达在人工影响天气中的应用[J]. 气象科技,2002,30(2): 127-128,117-118.
[6]杨吉,刘黎平,李国平,等. 基于雷达回波拼图资料的风暴单体和中尺度对流系统识别、跟踪及预报技术[J]. 气象学报,2012,70(6): 1347-1355.
[7]程相坤,杨慧玲,李红斌,等. 一次强单体雹暴结构和成雹机制的数值模拟研究[J]. 高原气象,2012,31(3): 836-846.
[8]李金辉, 岳治国, 李家阳, 等. 两块冰雹云催化防雹效果分析[J]. 高原气象, 2011, 30(1): 252-257.
[9]孙玉稳,韩洋,孙霞,等 . 降雹类型及相关因子的分布特征[J]. 高原气象,2012,31(1): 269-276.
[10]李江波,王宗敏,王福侠,等. 华北冷涡连续降雹的特征与预报[J]. 高原气象,2011,30(4): 1119-1131.
[11]陶云,段旭,段长春,等. 云南冰雹的变化特征[J]. 高原气象,2011,30(4): 1108-1118.
[12]刘年庆,郑媛媛,蒋建莹, 等. 基于动态特征的强对流云团追踪[J]. 高原气象,2013,32(2): 556-563,doi: 10.7522/j.issn.1000-0534.2012.00053.
[13]史锐,程明虎,崔哲虎,等. 多普勒雷达实时反射率因子垂直廓线观测研究[J]. 气象,2005,31(9): 39-43.
[14]金华. 河南省春季层状云降水特征和人工增雨条件的研究[D]. 北京:中国气象科学研究院,2006.
[15]廖向花,林娜. 利用多普勒雷达产品识别重庆冰雹云指标分析[J]. 西南大学学报,2011,33(11): 132-135.
[16]王伏村,丁荣,李耀辉,等. 河西走廊中部冰雹天气的环流和多普勒雷达产品特征分析[J]. 高原气象,2008,27(6):1343-1349.
[17]张俊兰. 南疆2011年5月一次强冰雹天气的综合分析[J]. 中国沙漠, 2012, 32(4):1119-1126.
[18]张腾飞,段旭,鲁亚斌,等. 云南一次强对流冰雹过程的环流及雷达回波特征分析[J]. 高原气象,2006,25(3):531-538.
[19]樊志超,高继林,王治平,等. 湘西北山区夏季冰雹云多普勒雷达定量判别指标[J]. 气象,2006,32(12): 50-57.
[20]郭艳,蔡哲,杨建超,等. 江西人工增雨作业条件的回波参数指标分析[J]. 气象与灾害研究,2010,33(4): 67-71.
[21]邓金芳. 一次飑线过程的过程分析[J]. 陕西气象,1999(2): 12-13.
[22]王建国, 汪应琼. CINRAD/SA雷达产品在冰雹预警中的适用性分析[J]. 暴雨灾害, 2008, 27(3): 268-272.
[23]李红斌,何玉科,孙红艳,等. 大连市人工防雹作业与概念模型的研究[J]. 高原气象,2011,30(2): 482-488.
[24]李云川. 用CINRAD-SA雷达产品识别冰雹、大风和强降水[J]. 气象,2006,32(10): 64-71.
[25]渠永兴,马玉萍. 甘肃省冰雹云雷达预警指标与作业方法研究[J]. 干旱区资源与环境,2005,19(5): 122-125.
[26]樊鹏,肖辉. 雷达识别渭北地区冰雹云技术研究[J]. 气象,2005,31(7): 17-19.
[27]王丽荣,杨荣珍,李朝华,等. 多普勒雷达三维拼图资料在强对流天气监测中的应用[J]. 气象与环境学报,2009,25(5): 18-23.
[28]吴春霞,赵俊荣,郭金强,等. “20090719”致灾冰雹的多普勒雷达回波特征分析[J]. 青海气象,2011(4):56-61
[29]俞小鼎,姚秀萍,熊延南,等. 多普勒天气雷达原理与业务应用[M]. 北京: 气象出版社,2006: 151-207.
[30]付双喜,安林,康凤琴,等. VIL在识别冰雹云中的应用及估测误差分析[J]. 高原气象,2004,23(6): 810-814.
[31]邓金芳,李金辉,陈亚琼. 宝鸡推广应用WR-1B型火箭消雹个例分析[J]. 陕西气象,2000(1): 24-26.
[32]樊鹏. 降雹时风暴剖面45dBz高度的确定[J]. 陕西气象,1994(3): 35-37.
[33]张崇莉, 赖云华, 杨有仁, 等. 滇西北一次降雹过程的多普勒天气雷达回波特征分析[J]. 暴雨灾害, 2012, 31(1): 72-77.
[34]房春琴. 陕西冰雹实例垂直累积液态含水量指标分析[J]. 陕西气象, 2006(5):28-31.
[35]肖艳姣,马中元,李中华. 改进的雷达回波顶高、垂直积分液态水含量及其密度算法[J]. 暴雨灾害,2009,28(3): 210-214.
[36]Amburn S,Wolf P. VIL density as a hail indicator[J]. Wea Forecasting,1997,12: 473-478.
[37]李宏宇,嵇磊,周嵬,等. 北京地区人工增雨效果和防雹经济效益评估[J]. 高原气象,2014,33(4): 1119-1130,doi: 10.7522/j.issn.1000-0534.2013.00027.
[38]Waldvogel A,Schmid W,Grimm P. Criteria for the detection of hail cells[J]. J Appl Meteor,1979,18: 1521-1525.
[39]王福侠,张守保,裴宇杰,等. 可能降雹多普勒雷达产品特征指标分析[J]. 气象科技,2008,36(2): 228-233.
[40]张崇莉,钱宝敏,和卫东,等. VIL产品在高山雷达中的应用研究[J]. 高原气象,2012,31(2): 562-567.
[41]李秀琳,贾金海. VIL产品在人工防雹中的应用[J]. 陕西气象,2008(3): 13-16.
[42]刁秀广,朱君鉴,黄秀韶,等. VIL和VIL密度在冰雹云判据中的应用[J]. 高原气象,2008,27(5): 1131-1139.
[43]Zadeh L A. Fuzzy algorithms[J]. Info.& Ctl.,1965,8(3): 338-353.
[44]Kessiner C,Ellis S,Vanandel J,et al. The AP clutter mitigation scheme for the WSR-88D[R]. Preprints of 31<sup>st</sup> Conference on Radar Meteorology,Seattle Washington. Amer Meteor Soc,2003: 526-529.
[45]刘黎平,吴林林,杨引明. 基于模糊逻辑的分步式超折射地物回波识别方法的建立和效果分析[J]. 气象学报,2007, 65(2): 252-260.
Outlines

/