Study of Estimation of Soil Heat Flux at a Wheat Field in Semi-Arid Area of Loess Plateau

  • CHEN Xing ,
  • YU Ye ,
  • CHEN Jinbei ,
  • ZHANG Tangtang ,
  • LI Zhenchao
Expand
  • Key Laboratory of Land Surface Process & Climate Change in Cold & Arid Regions, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou 730000, China;2. University of Chinese Academy of Sciences, Beijing 100049, China;3. Pingliang Land Surface Process & Severe Weather Research Station, Chinese Academy of Sciences, Pingliang 744015, China

Received date: 2013-01-15

  Online published: 2014-12-28

Abstract

Three methods, i.e. integrate temperature method (ITHP), temperature prediction-correction method (TDEC) and harmonic analysis technique (HM), for the estimation of soil heat flux after rain were evaluated for a winter wheat field in the semi-arid area of Loess Plateau using data collected at the Pingliang Land Surface Process & Severe Weather Research Station. The influences of heat transferred by the soil water movement on the soil heat flux were discussed. The soil is highly heterogeneity in the vertical with the thermal diffusivity in the depth of 0.05~0.10 m being about 3 times of that in the depth of 0.10~0.20 m. The peak soil heat flux at 0.05 m depth calculated by the ITHP method, the TDEC method and the HM technique are smaller than the measured by about 23.6%, 25.0% and 12.8%, respectively. Compared to the direct measurements by a soil heat plate at 0.05 m depth, the ground heat flux calculated with the ITHP method, the TEDC method and the HM technique can improve the surface energy budget closure by 7.96%, 4.54% and 5.65% at the winter wheat site in the Loess Plateau, respectively. The transportation of water vapor and the corresponding phase transition in the agricultural soil played a role in ground heat flux.

Cite this article

CHEN Xing , YU Ye , CHEN Jinbei , ZHANG Tangtang , LI Zhenchao . Study of Estimation of Soil Heat Flux at a Wheat Field in Semi-Arid Area of Loess Plateau[J]. Plateau Meteorology, 2014 , 33(6) : 1514 -1525 . DOI: 10.7522/j.issn.1000-0534.2013.00091

References

[1]王介民. 陆面过程实验和地气相互作用研究——从HEIFE到IMGRASS和GAME-TIBET/TIPEX[J]. 高原气象, 1999, 18(3): 281-294.
[2]Foken T, Wimmer F, Mauder M, et al. Some aspects of the energy balance closure problem[J]. Atmospheric Chemistry & Physics, 2006, 6: 4395-4402, doi: 10.5194/acp-6-4395-2006.
[3]王介民, 王维真, 刘绍民, 等. 近地层能量平衡闭合问题——综述及个例分析[J]. 地球科学进展, 2009, 24(7): 705-713.
[4]Heusinkveld B G, Jacobs A F G, Holtslag A A M, et al. Surface energy balance closure in an arid region: Role of soil heat flux[J]. Agricultural & Forest Meteorology, 2004, 122: 21-37, doi: 10.1016/j.agrformet.2003.09.005.
[5]李正泉, 于贵瑞, 温学发, 等. 中国通量观测网络(ChinaFLUX)能量平衡闭合状况的评价[J]. 中国科学: 地球科学, 2004, 34(增刊2): 46-56.
[6]李宏宇, 张强, 王春玲, 等. 空气热储存、光合作用和土壤垂直水分运动对黄土高原地表能量平衡的影响[J]. 物理学报, 2012, 61(15), 159201.
[7]张强, 李宏宇. 黄土高原地表能量不闭合度与垂直感热平流的关系[J]. 物理学报, 2010, 59(8): 5888-5895.
[8]张强, 李宏宇, 赵建华. 垂直平流输送和土壤热存储补偿对黄土高原地表能量平衡的修正[J]. 中国科学: 地球科学, 2012, 42(1): 42-51.
[9]吕少宁, 文军, 张宇, 等.不同平均时间对LOPEX10资料涡动相关湍流通量计算结果影响的探讨[J].高原气象, 2012, 31(6): 1530-1538.
[10]王少影, 张宇, 吕世华, 等. 金塔绿洲湍流资料的质量控制研究[J].高原气象, 2009, 28(6): 1260-1273.
[11]Yang K, Wang J M. A temperature prediction-correction method for estimating surface soil heat flux from soil temperature and moisture data[J]. Science in China: Earth Sciences, 2008, 51(5): 721-729.
[12]范新岗, 汤懋苍. 土壤传导—对流热通量计算的初步结果[J]. 高原气象, 1994, 13(1): 14-19.
[13]Gao Z Q, Fan X G, Bian L G. An analytical solution to one-dimensional thermal conduction-convection in soil[J]. Soil Science, 2003, 168: 99-107.
[14]Liebethal C, Huwe B, Foken T. Sensitivity analysis for two ground heat flux calculation approaches[J]. Agricultural & Forest Meteorology, 2005, 132: 253-262, doi: 10.1016/j.agrformet.2005.08.001.
[15]Heitman J L, Horton R, Sauer T J, et al. Latent heat in soil heat flux measurements[J]. Agricultural & Forest Meteorology, 2010, 150: 1147-1153, doi: 10.1016/j.agrformet.2010.04.017.
[16]Weber S, Graf A, Heusinkveld B G. Accuracy of soil heat flux plate measurements in coarse substrates-Field measurements versus a laboratory test[J]. Theoretical & Applied Climatology, 2007, 89: 109-114, doi: 10.1007/s00704-006-0256-2.
[17]左金清, 王介民, 黄建平, 等. 半干旱草地地表土壤热通量的计算及其对能量平衡的影响[J]. 高原气象, 2010, 29(4): 840-848.
[18]Horton R, Wierenga P J. Determination of the mean soil temperature for evaluation of heat flux in soil[J]. Agricultural Meteorolgy, 1983, 28: 309-319, doi: 10.1016/0002-1571(83)90008-0.
[19]Liebethal C, Foken T. Evaluation of six parameterization approaches for the ground heat flux[J]. Theoretical & Applied Climatology, 2007, 88: 43-56, doi: 10.1007/s00704-005-0234-0.
[20]Wang Z H, Zeid E B. A novel approach for the estimation of soil ground heat flux[J]. Agricultural & Forest Meteorology, 2012, 154-155: 214-221, doi: 10.1016/j.agrformet.2011.12.001.
[21]Hukseflux Thermal Sensors. Application and specification of heat flux sensors. V. 9904[Z]. Delft: Hukseflux Thermal Sensors, 1999.
[22]McCumber M C, Pielke R A. Simulation of the effects of surface fluxes of heat and moisture in a mesoscale numerical model 1.Soil layer[J]. J Geophys Res, 1981, 86: 9929-9938, doi: 10.1029/JC086iC10p09929.
[23]李亮, 张宏, 胡波, 等. 不同土壤类型的热通量变化特征[J]. 高原气象, 2012, 31(2): 322-328.
[24]孙菽芬. 陆面过程的物理、生化机理和参数化模型[M]. 北京: 气象出版社, 2005: 1-69.
[25]Westcot D W, Wierenga P J. Transfer of heat by conduction and vapor movement in a closed soil system[J]. Soil Science Society of America Journal, 1974, 38(1): 9-14, doi: 10.2136/sssaj1974.03615995003800010012x.
[26]Clapp R B, Hornberger G M. Empirical equations for some soil hydraulic properties[J]. Water Resources Research, 1978, 14(4): 601-604, doi: 10.1029/WR014i004p00601.
[27]Bittelli M, Ventura F, Campbell G S, et al. Coupling of heat, water vapor, and liquid water fluxes to compute evaporation in bare soils[J]. J Hydrology, 2008, 362: 191-205, doi: 10.1016/j.jhydrol.2008.08.014.
[28]缪育聪, 刘树华, 吕世华, 等.土壤热扩散率及其温度、热通量计算方法的比较研究[J].地球物理学报, 2012, 55(2): 441-451.
[29]孙秉强, 张强, 董安祥, 等. 甘肃黄土高原土壤水分气候特征[J]. 地球科学进展, 2005, 20(9): 1041-1046.
[30]Gao Z Q, Wang L L, Horton R. Comparison of six algorithms to determine the soil thermal diffusivity at a site in the Loess Plateau of China[J]. Hydrology and Earth System Sciences Discussions, 2009, 6: 2247-2274.
[31]Gao Z Q, Lenschow D H, Horton R, et al. Comparison of two soil temperature algorithms for a bare ground site on the Loess Plateau in China[J]. J Geophys Res, 2008, 113, D18105, doi: 10.1029/2008JD010285.
[32]Horton R, Wierenga P J, Nielsen D R. Evaluation of methods for determining the apparent thermal diffusivity of soil near the surface[J]. Soil Science Society of America Journal, 1983, 47: 25-32, doi: 10.2136/sssaj1983.03615995004700010005x.
[33]De Vries D A. Simultaneous transfer of heat and moisture in porous media[J]. Trans Amer Geophys Union, 1958, 39: 909-916.
[34]刘树华, 崔艳, 刘和平. 土壤热扩散系数的确定及其应用[J]. 应用气象学报, 1991, 2(4): 337-345.
[35]Ochsner T E, Sauer T J, Horton R. Field tests of the soil heat flux plate method and some alternatives[J]. Agronomy Journal, 2006, 98: 1005-1014, doi: 10.2134/agronj2005.0249.
[36]Philip J R. The theory of heat flux meters[J]. J Geophys Res, 1961, 66(2): 571-579, doi: 10.1029/JZ066i002p00571.
[37]Wen J, Wang L, Wei Z G. An overview of the Loess Plateau mesa region land surface process field EXperiment series (LOPEXs)[J]. Hydrology & Earth System Sciences, 2009, 13(6): 945-951, doi: 10.5194/hess-13-945-2009.
[38]韦志刚, 文军, 吕世华, 等. 黄土高原陆-气相互作用预试验及其晴天地表能量特征分析[J]. 高原气象, 2005, 24(4): 545-555.
[39]李春为. 中国黄土高原半干旱地区地表能量收支分析[D]. 兰州: 兰州大学, 2008: 34-35.
Outlines

/