Based on the lidar (CE-370-2) data from 2006 to 2011 which is provided by the team of Semi-Arid Climate and Environment Observatory of Lanzhou University, the vertical profiles of aerosol extinction coefficient (AEC) are analyzed. The results show: aerosols are concentrated below 2 km of which 60% distribute within 1 km; the values of extinction coefficient become high from 00:00(Beijing Time, hereafter the same) to 12:00 with the peak at 12:00, later they become low; the heights of aerosol concentrated distribution in summer and autumn are respectively 3 km and 2.5 km, while 2 km and 1.5 km in spring and winter respectively; in low troposphere (below 2 km) the seasonal distribution of AEC is that the range of AEC is from 0.20 to 0.85 km-1, holding 92% in winter; in spring the range of AEC is from 0.05 to 0.45, holding 88%; in autumn its range is from 0.02 to 0.2 km-1, holding 82%; and in summer its range is from 0.04 to 0.08 km-1, holding 70%; in dust periods, aerosols can penetrate up to 6 km or more higher; in strong dust processes, the height of lidar valid detection is below 2 km; the retrieval of extinction coefficient shows interruptions phenomena. The vertical profile evolvement of aerosol extinction coefficient is consistent with the change trend of atmosphere boundary layer vertical structure.
ZHOU Bi
,
ZHANG Lei
,
SUI Bing
,
JIANG Deming
,
CAO Xianjie
,
LI Xia
,
LIU Zhixiong
. Detection of Aerosol Vertical Distribution Using Lidar in Lanzhou District[J]. Plateau Meteorology, 2014
, 33(6)
: 1545
-1550
.
DOI: 10.7522/j.issn.1000-0534.2013.00135
[1]Penner J E, Andreae M, Annegarn H, et al. Climate Change 2001: The Scientific Basis[M]. Cambridge: Cambridge University Press, 2001: 293.
[2]盛裴轩, 毛节泰, 李建国, 等. 大气物理学[M]. 北京: 气象出版社, 2005: 28.
[3]Clark W E, Whitby K T. Concentration and size distribution measurements of atmospheric aerosols and a test of the theory of self-preserving size distributions[J]. J Atmos Sci, 1967, 24(6): 677-687.
[4]张佃国, 王俊, 李晓印, 等. 济南及周边地区大气气溶胶空间分布特征[J]. 高原气象, 2011, 30(5): 1346-1355.
[5]张杰, 唐从国. 干旱区一次春季沙尘过程的大气气溶胶垂直分布结构及其特征[J]. 高原气象, 2012, 31(1): 156-166.
[6]宿兴涛, 王汉杰. 近10年东亚地区沙尘气溶胶时空分布与起尘通量的数值研究[J]. 高原气象, 2012, 31(3): 676-687.
[7]IPCC. Climate Change 2007: The Scientific Basis[M]. Contribution of Working Group 1 to the Fourth Assessment Report of the Intergovemmental Panel on Climate Change. Cambridge, UK and New York, USA: Cambridge University Press, 2007: 168-169.
[8]Matthias M, Balis D, B?senberg J. Vertical aerosol distribution over Europe: Statistical analysis of Raman lidar data from 10 European Aerosol Research Lidar Network (EARLINET) stations[J]. J Geophys Res, 2004, 109, doi: 10.1029/2004JD004638.
[9]Huang Z, Huang J, Bi J, et al. Dust aerosol vertical structure measurements using three MPL lidars during 2008 China-U.S. joint dust field experiment[J]. J Geophys Res, 2010, 115, doi: 10.1029/2009JD013273.
[10]Balis D, Papayannis A, Galani E, et al. Tropospheric lidar aerosol measurements and sun photometric observations at Thessaloniki, Greece[J]. Atmos Environ, 2000, 34(6): 925-932.
[11]Welton E J, Voss K J, Quinn P K, et al. Measurements of aerosol vertical profiles and optical properties during INDOEX 1999 using micropulse lidars[J]. J Geophys Res, 2002, 107, doi: 10.1029/2000JD000038.
[12]Yu H, Chin M, Winker D M, et al. Global view of aerosol vertical distributions from CALIPSO lidar measurements and GOCART simulations: Regional and seasonal variations[J]. J Geophys Res, 2010, 115, doi: 10.1029/2009JD013364.
[13]Sicard M, Rocadenbosch F, Reba M N M, et al. Seasonal variability of aerosol optical properties observed by means of a Raman lidar at an EARLINET site over Northeastern Spain[J]. Atmos Chem Phys, 2011, 11: 175-190.
[14]Lu X, Jiang Y, Zhang X, et al. Two-wavelength lidar inversion algorithm for determination of aerosol extinction-to-backscatter ration and its application to CALIPSO lidar measurements[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2011, 112(2): 320-328.
[15]Burton S P, Ferrare R A, Hostetler C A, et al. Aerosol classification using airborne High Spectral Resolution Lidar measurements-methodology and examples [J]. Atmos Meas Tech, 2012, 5: 73-98.
[16]黄忠伟. 气溶胶物理光学特性的激光雷达遥感研究[D]. 兰州: 兰州大学, 2012: 57-63.
[17]Zhang L, Chen C, Murlis J. Study on winter air pollution control in Lanzhou, China[J]. Water, Air, & Soil Pollution, 2001, 127: 351-372.
[18]朱飙, 李书严, 李春华, 等. 兰州市新区规划气候条件评估分析[J]. 高原气象, 2013, 32(2): 587-596, doi: 10.7522/j.issn.1000-0534.2012.00057.
[19]Wang S G, Wang J Y, Zhou Z J, et al. Regional characteristics of three kinds of dust storm events in China[J]. Atmos Environ, 2005, 39(3): 509-520.
[20]Huang J P, Zhang W, Zuo J Q, et al. An overview of the semi-arid climate and environment research observatory over the Loess Plateau [J]. Adv Atmos Sci, 2008, 25(6): 906-921.
[21]赵秀娟, 陈长和, 袁铁, 等. 兰州冬季大气气溶胶光学厚度及其能见度的关系[J]. 高原气象, 2005, 24(4): 617-622.
[22]曹贤洁, 张镭, 周碧, 等. 利用激光雷达观测兰州沙尘气溶胶辐射特性[J]. 高原气象, 2009, 28(5): 1115-1120.
[23]周碧, 张镭, 曹贤洁, 等. 利用激光雷达资料分析兰州远郊气溶胶光学特性[J]. 高原气象, 2011, 30(4): 1011-1017.
[24]周碧. 黄土高原半干旱区气溶胶辐射特性观测研究[D]. 兰州: 兰州大学, 2012: 19-20.
[25]赵柏林, 张蔼琛. 大气探测原理[M]. 北京: 气象出版社, 1987: 392-393.
[26]赵世强, 张镭, 王治厅, 等. 利用激光雷达结合数值模式估算兰州远郊榆中地区夏季边界层高度[J]. 气候与环境研究, 2012, 17(5): 523-531.
[27]Yumimoto K, Eguchi K, Uno I, et al. An elevated large-scale dust veil from the Taklimakan Desert: Intercontinental transport and three-dimensional structure as captured by CALIPSO and regional and global models[J]. Atmos Chem Phys, 2009, 9: 8545-8558.