Detection of Aerosol Vertical Distribution Using Lidar in Lanzhou District

  • ZHOU Bi ,
  • ZHANG Lei ,
  • SUI Bing ,
  • JIANG Deming ,
  • CAO Xianjie ,
  • LI Xia ,
  • LIU Zhixiong
Expand
  • Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China;2. Key Laboratory of Hunan Province for Meteorological Disaster Prevention and Mitigation, Hunan Institute of Meteorological Sciences, Hunan Province Meteorological Administration, Changsha 410007, China;3. Beijing Weather Modification Office, Beijing 100089, China

Received date: 2013-05-09

  Online published: 2014-12-28

Abstract

Based on the lidar (CE-370-2) data from 2006 to 2011 which is provided by the team of Semi-Arid Climate and Environment Observatory of Lanzhou University, the vertical profiles of aerosol extinction coefficient (AEC) are analyzed. The results show: aerosols are concentrated below 2 km of which 60% distribute within 1 km; the values of extinction coefficient become high from 00:00(Beijing Time, hereafter the same) to 12:00 with the peak at 12:00, later they become low; the heights of aerosol concentrated distribution in summer and autumn are respectively 3 km and 2.5 km, while 2 km and 1.5 km in spring and winter respectively; in low troposphere (below 2 km) the seasonal distribution of AEC is that the range of AEC is from 0.20 to 0.85 km-1, holding 92% in winter; in spring the range of AEC is from 0.05 to 0.45, holding 88%; in autumn its range is from 0.02 to 0.2 km-1, holding 82%; and in summer its range is from 0.04 to 0.08 km-1, holding 70%; in dust periods, aerosols can penetrate up to 6 km or more higher; in strong dust processes, the height of lidar valid detection is below 2 km; the retrieval of extinction coefficient shows interruptions phenomena. The vertical profile evolvement of aerosol extinction coefficient is consistent with the change trend of atmosphere boundary layer vertical structure.

Cite this article

ZHOU Bi , ZHANG Lei , SUI Bing , JIANG Deming , CAO Xianjie , LI Xia , LIU Zhixiong . Detection of Aerosol Vertical Distribution Using Lidar in Lanzhou District[J]. Plateau Meteorology, 2014 , 33(6) : 1545 -1550 . DOI: 10.7522/j.issn.1000-0534.2013.00135

References

[1]Penner J E, Andreae M, Annegarn H, et al. Climate Change 2001: The Scientific Basis[M]. Cambridge: Cambridge University Press, 2001: 293.
[2]盛裴轩, 毛节泰, 李建国, 等. 大气物理学[M]. 北京: 气象出版社, 2005: 28.
[3]Clark W E, Whitby K T. Concentration and size distribution measurements of atmospheric aerosols and a test of the theory of self-preserving size distributions[J]. J Atmos Sci, 1967, 24(6): 677-687.
[4]张佃国, 王俊, 李晓印, 等. 济南及周边地区大气气溶胶空间分布特征[J]. 高原气象, 2011, 30(5): 1346-1355.
[5]张杰, 唐从国. 干旱区一次春季沙尘过程的大气气溶胶垂直分布结构及其特征[J]. 高原气象, 2012, 31(1): 156-166.
[6]宿兴涛, 王汉杰. 近10年东亚地区沙尘气溶胶时空分布与起尘通量的数值研究[J]. 高原气象, 2012, 31(3): 676-687.
[7]IPCC. Climate Change 2007: The Scientific Basis[M]. Contribution of Working Group 1 to the Fourth Assessment Report of the Intergovemmental Panel on Climate Change. Cambridge, UK and New York, USA: Cambridge University Press, 2007: 168-169.
[8]Matthias M, Balis D, B?senberg J. Vertical aerosol distribution over Europe: Statistical analysis of Raman lidar data from 10 European Aerosol Research Lidar Network (EARLINET) stations[J]. J Geophys Res, 2004, 109, doi: 10.1029/2004JD004638.
[9]Huang Z, Huang J, Bi J, et al. Dust aerosol vertical structure measurements using three MPL lidars during 2008 China-U.S. joint dust field experiment[J]. J Geophys Res, 2010, 115, doi: 10.1029/2009JD013273.
[10]Balis D, Papayannis A, Galani E, et al. Tropospheric lidar aerosol measurements and sun photometric observations at Thessaloniki, Greece[J]. Atmos Environ, 2000, 34(6): 925-932.
[11]Welton E J, Voss K J, Quinn P K, et al. Measurements of aerosol vertical profiles and optical properties during INDOEX 1999 using micropulse lidars[J]. J Geophys Res, 2002, 107, doi: 10.1029/2000JD000038.
[12]Yu H, Chin M, Winker D M, et al. Global view of aerosol vertical distributions from CALIPSO lidar measurements and GOCART simulations: Regional and seasonal variations[J]. J Geophys Res, 2010, 115, doi: 10.1029/2009JD013364.
[13]Sicard M, Rocadenbosch F, Reba M N M, et al. Seasonal variability of aerosol optical properties observed by means of a Raman lidar at an EARLINET site over Northeastern Spain[J]. Atmos Chem Phys, 2011, 11: 175-190.
[14]Lu X, Jiang Y, Zhang X, et al. Two-wavelength lidar inversion algorithm for determination of aerosol extinction-to-backscatter ration and its application to CALIPSO lidar measurements[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2011, 112(2): 320-328.
[15]Burton S P, Ferrare R A, Hostetler C A, et al. Aerosol classification using airborne High Spectral Resolution Lidar measurements-methodology and examples [J]. Atmos Meas Tech, 2012, 5: 73-98.
[16]黄忠伟. 气溶胶物理光学特性的激光雷达遥感研究[D]. 兰州: 兰州大学, 2012: 57-63.
[17]Zhang L, Chen C, Murlis J. Study on winter air pollution control in Lanzhou, China[J]. Water, Air, & Soil Pollution, 2001, 127: 351-372.
[18]朱飙, 李书严, 李春华, 等. 兰州市新区规划气候条件评估分析[J]. 高原气象, 2013, 32(2): 587-596, doi: 10.7522/j.issn.1000-0534.2012.00057.
[19]Wang S G, Wang J Y, Zhou Z J, et al. Regional characteristics of three kinds of dust storm events in China[J]. Atmos Environ, 2005, 39(3): 509-520.
[20]Huang J P, Zhang W, Zuo J Q, et al. An overview of the semi-arid climate and environment research observatory over the Loess Plateau [J]. Adv Atmos Sci, 2008, 25(6): 906-921.
[21]赵秀娟, 陈长和, 袁铁, 等. 兰州冬季大气气溶胶光学厚度及其能见度的关系[J]. 高原气象, 2005, 24(4): 617-622.
[22]曹贤洁, 张镭, 周碧, 等. 利用激光雷达观测兰州沙尘气溶胶辐射特性[J]. 高原气象, 2009, 28(5): 1115-1120.
[23]周碧, 张镭, 曹贤洁, 等. 利用激光雷达资料分析兰州远郊气溶胶光学特性[J]. 高原气象, 2011, 30(4): 1011-1017.
[24]周碧. 黄土高原半干旱区气溶胶辐射特性观测研究[D]. 兰州: 兰州大学, 2012: 19-20.
[25]赵柏林, 张蔼琛. 大气探测原理[M]. 北京: 气象出版社, 1987: 392-393.
[26]赵世强, 张镭, 王治厅, 等. 利用激光雷达结合数值模式估算兰州远郊榆中地区夏季边界层高度[J]. 气候与环境研究, 2012, 17(5): 523-531.
[27]Yumimoto K, Eguchi K, Uno I, et al. An elevated large-scale dust veil from the Taklimakan Desert: Intercontinental transport and three-dimensional structure as captured by CALIPSO and regional and global models[J]. Atmos Chem Phys, 2009, 9: 8545-8558.
Outlines

/