Study of Spatial and Temporal Variations of Sea Salt Aerosol and Its Direct Climate Effect over East Asia

  • ZHANG Ying ,
  • WANG Tijian ,
  • ZHUANG Bingliang ,
  • LIAO Jingbiao ,
  • YIN Changqin
Expand
  • School of Atmospheric Sciences, Nanjing University, Nanjing 210093, China

Received date: 2013-02-01

  Online published: 2014-12-28

Abstract

Sea salt aerosol (SSA) is one of the most important aerosol components in atmosphere, which plays very important role in atmospheric environment and climate change. The regional climate and chemistry modeling system RegCCMS was further developed and applied to investigate the spatial and temporal characteristics of sea salt aerosol as well as its direct effect. Here we present numerical simulations on sea salt aerosol concentrations and then its direct climate responses in January, April, July and October 2006, representing for four seasons. The annual mean concentration of SSA over ocean areas of East Asia reaches 14.69 μg·m-3. The maximum concentration of 26.27 μg·m-3 occurs in winter, while the minimum concentration of 7.59 μg·m-3 occurs in summer. The results indicate that the spatial and temporal distribution of SSA shows obvious seasonal variation. The high value center of SSA concentration appears in the South China Sea in winter and in the Yellow Sea in summer. The annual direct radiative forcing at the top of atmosphere of SSA in this area is estimated to be -2.35 W·m-2 and -1.17 W·m-2 for clear sky and all sky, respectively. The direct climate effects of SSA lead to cooling over the coastal land and islands. For Taiwan, the cooling is -1.0940 K, -0.0083 K in July and January, respectively. For the coastal land, the coolings in July and January are -0.1330 K and -0.0142 K, respectively.

Cite this article

ZHANG Ying , WANG Tijian , ZHUANG Bingliang , LIAO Jingbiao , YIN Changqin . Study of Spatial and Temporal Variations of Sea Salt Aerosol and Its Direct Climate Effect over East Asia[J]. Plateau Meteorology, 2014 , 33(6) : 1551 -1561 . DOI: 10.7522/j.issn.1000-0534.2013.00106

References

[1]Zakey A S, Giorgi F, Bi X. Modeling of sea salt in a regional climate model: Fluxes and radiative[J]. J Geophys Res, 2008, 113, D14221, doi:10.1029/2007JD009209.
[2]Roth B, Okada K. On the modification of sea-salt particles in the coastal atmosphere[J]. Atmos Environ, 1998, 32: 1555-1569.
[3]Weis D D, Ewing G E. The reaction of nitrogen dioxide with sea salt aerosol[J]. J Phys Chem A, 1999, 103: 4865-4873.
[4]Blanchard D C, Woodcock A H. Bubble formation and modification in the sea and its meteorological significance[J]. Tellus, 1957, 9: 145-158.
[5]Seinfeld J H, Pandis S N. Atmospheric Chemistry and Physics, From Air Pollution to Climate Change[M]. New York: John Wiley and Sons, 1998: 1326.
[6]Tegen I N, Hollrig P, Chin M, et al. Contribution of different aerosol species to the global aerosol extinction optical thickness: Estimates from model results[J]. J Geophys Res, 1997, 102(D20), 23,895-23,915, doi:10.1029/97JD01864.
[7]罗燕, 吴涧, 王卫国. 利用MODIS2GOCART 气溶胶资料研究中国东部地区气溶胶直接辐射强迫[J]. 热带气象学报, 2006, 22(6): 638- 649.
[8]Sievering H, Cainey J, Harvey M, et al. Aerosol non-sea-salt sulfate in the remote marine boundary layer under clear-sky and normal cloudiness conditions: Ocean-derived biogenic alkalinity enhances sea-salt sulfate production by ozone oxidation[J]. J Geophys Res, 2004, 109, D19317, doi:10.1029/2003JD004315.
[9]Foltescu V L, Pryor S C, Bennet C. Sea salt generation, dispersion and removal on the regional scale[J]. Atmos Environ, 2005, 39(11): 2123-2133.
[10]Zhang K M, Eladio M K, Anthony S, et al. Size distribution of sea-salt emissions as a function of relative humidity[J]. Atmos Environ, 2005, 39(18): 3373-3379.
[11]Clarke A D, Owens S R, Zhou J. An ultrafine sea-salt flux from breaking waves: implications for cloud condensation nuclei in the remote marine atmosphere[J]. J Geophys Res, 2006, 111, D06202. doi:10.1029/ 2005JD006565.
[12]刘倩. 中国地区海盐气溶胶模拟及其对硫氮循环的影响研究[D]. 南京: 南京大学, 2008: 1-72.
[13]Steven D, Li Jiangnan, Richard H, et al. Sea-salt optical properties and GCM forcing at solar wavelengths[J]. Atmos Res, 2003, 65(3-4): 211-233.
[14]Pryor S C, Sorensen L L. Nitric acid-sea salt reactions: implications for nitrogen deposition to water surfaces[J]. J Appl Meteor, 2000, 39(5): 725-731.
[15]Ma X, Salzen K, Li J. Modelling sea salt aerosol and its direct and indirect effects on climate[J]. Atoms Chem Phys Discuss.2007, 7: 14939-14987.
[16]Elguindi N, Bi X, Giorgi F, et al. RegCM Version 3.0 User's Guide[Z]. http://users.ictp.it/RegCNET/model.html, 2007.
[17]王体健, 谢旻, 高丽洁, 等. 一个区域气候-化学耦合模式的研制及初步应用[J]. 南京大学学报: 自然科学版, 2004, 6: 711-727.
[18]Giorgi F, Bi X, Qian Y. Direct radiative forcing and regional climatic effects of anthropogenic aerosols over East Asia: A regional coupled climate-chemistry/aerosol model study[J]. J Geophys Res, 2002, 107(D20), 4439, doi:10.1029/2001JD001066.
[19]Qian Y, Leung L R, Ghan S J, et al. Regional climate effects of aerosols over China: Modeling and observation[J]. Tellus, 55B: 914-934.
[20]Pal J S, Giorgi F, Bi X. Consistency of recent European summer precipitation trends and extremes with future regional climate projectins[J]. Geophys Res Lett, 2004, 31, L13202, doi:10.1029/2004GL019, 836.
[21]Giorgi F, Bi X, Pal J S. Mean, interannual variability and trends in a regional climate experiment over Europe. II: Future climate (2070-2100)[J]. Climate Dyn, 23(7-8): 839-858.
[22]Gao X J, Pal J S, Giorgi F. Projected changes in mean and extreme precipitation over the Mediterranean region from a high resolution double nested RCM simulation[J]. J Geophys Res, 2006, 33, L03706, doi: 10.1029/2005GL024, 954.
[23]Li S, Wang T J, Zhuang B L, et al. Indirect radiative forcing and climatic effect of the anthropogenic nitrate aerosol on regional climate of China[J]. Adv Atmos Sci, 2009, 26(3): 543-552, doi: 10.1007/s00376-009-0543-9.
[24]庄炳亮, 王体健, 和李树. 中国地区黑碳气溶胶的第一间接辐射强迫与气候效应[J]. 高原气象, 2009, 28(5): 1095-1103.
[25]Wang T, Li S, Shen Y, et al. Investigations on direct and indirect effect of nitrate on temperature and precipitation in China using a regional climate chemistry modeling system[J]. J Geophys Res, 2010, 115, D00K26, doi: 10.1029/2009JD013264.
[26]Zhuang B L, Jiang F, Wang T J, et al. Investigation on the direct radiative effect of fossil fuel black-carbon aerosol over China[J]. Theor Appl Climatol, 2010, doi: 10.1007/s00704-010-0341-4.
[27]Zhuang B L, Liu L, Shen F H, et al. Semidirect radiative forcing of internal mixed black carbon cloud droplet and its regional climatic effect over China[J]. J Geophys Res, 2010, 115, D00K19, doi: 10.1029/2009JD013165.
[28]Erickson D J, Merrill J T, Duce R A. Seasonal Estimates of Global Atmospheric Sea-salt Distributions[J]. J Geophys Res, 1986, 91(D1): 1067-1072.
[29]李霞, 任宜勇, 吴彦, 等. 乌鲁木齐污染物浓度和大气气溶胶光学厚度的关系[J]. 高原气象, 2007, 26(3): 541-546.
[30]Murphy D M, Anderson J R, Quinn P K, et al. Influence of sea-salt on aerosol radiative properties in the Southern Ocean marine boundary layer[J]. Nature, 1998, 392: 62-65.
[31]郝丽, 杨文, 石广玉, 等. 黑碳硫酸盐混合气溶胶的辐射特性分析[J]. 高原气象, 2010, 29(5): 1238-1245.
Outlines

/